【題目】低碳生活,綠色出行是我們倡導(dǎo)的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:

(1)樣本中的總?cè)藬?shù)為  人;扇形統(tǒng)計十圖中騎自行車所在扇形的圓心角為  度;

(2)補全條形統(tǒng)計圖;

(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?

【答案】(1) 80、72;(2) 16;(3) 50

【解析】

(1) 用步行人數(shù)除以其所占的百分比即可得到樣本總?cè)藬?shù):810%=80();用總?cè)藬?shù)乘以開私家車的所占百分比即可求出m,即 m=8025%=20;3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.

(2) 根據(jù)扇形統(tǒng)計圖算出騎自行車的所占百分比, 再用總?cè)藬?shù)乘以該百分比即可求出騎自行車的人數(shù), 補全條形圖即可.

(3) 依題意設(shè)原來開私家車的人中有x人改為騎自行車, x分別表示改變出行方式后的騎自行車和開私家車的人數(shù), 根據(jù)題意列出一元一次不等式, 解不等式即可.

解:(1)樣本中的總?cè)藬?shù)為8÷10%=80人,

∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,

∴扇形統(tǒng)計十圖中騎自行車所在扇形的圓心角為360°×20%=72°

(2)騎自行車的人數(shù)為80×20%=16人,

補全圖形如下:

(3)設(shè)原來開私家車的人中有x人改騎自行車,

由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,

解得:x≥50,

∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORt△ABC的外接圓,∠C=90°,tanB=,過點B的直線l⊙O的切線,點D是直線l上一點,過點DDE⊥CBCB延長線于點E,連接AD,交⊙O于點F,連接BF、CD交于點G.

(1)求證:△ACB∽△BED;

(2)當(dāng)AD⊥AC時,求 的值;

(3)若CD平分∠ACB,AC=2,連接CF,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+2的圖象與y軸交于點A,與反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象交于點B,且點B的橫坐標(biāo)為1.過點A作AC⊥y軸交反比例函數(shù)y=(k≠0)的圖象于點C,連接BC.

(1)求反比例函數(shù)的表達式.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是12,腰AB的垂直平分線EF分別交AB,AC于點E、F,若點D為底邊BC的中點,點M為線段EF上一動點,則△BDM的周長的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標(biāo)為(  )

A. (1345,0) B. (1345.5, C. (1345, D. (1345.5,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DEABAB的延長線于點EDFAC于點F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,把向上平移個單位長度,再向右平移個單位長度,得到;

1)寫出的坐標(biāo);

2)求出的面積;

3)點軸上,且的面積相等,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,AQ=PQ,PRAB于點R,PSAC于點SPR=PS.下列結(jié)論:①點P在∠A的角平分線上;②AS=AR;③QPAR;④△BRP≌△QSP.其中,正確的有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的一邊長為2,周長為8,那么它的腰長為 ( )

A. 2 B. 3 C. 2或3 D. 不能確定

查看答案和解析>>

同步練習(xí)冊答案