老師要求同學(xué)們在圖①中內(nèi)找一點P,使點P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結(jié)AB,取AB中點P,點P即為所求.
請你在圖②中的內(nèi)找一點P,使點P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

作法見解析;證明見解析.

解析試題分析:在OM、ON上分別截取OA=OB,連結(jié)AB.在∠MAB內(nèi)做射線AH,并在AH上順次截取AC=CD=DG,連結(jié)BG.分別過C、D兩點做DP∥BG、CQ∥BG.點P即為所求.
試題解析:做法:
(1)在OM、ON上分別截取OA=OB,連結(jié)AB.
(2)在∠MAB內(nèi)做射線AH,并在AH上順次截取AC=CD=DG,連結(jié)BG.
(3)分別過C、D兩點做DP∥BG、CQ∥BG.
點P即為所求.
證明:作,垂足分別為E、F.

則有
∵OA=OB,∴


∴ 點P即為所求.
考點: (1)幾何作圖;(2)相似三角形的判定與性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖正方形ABCD,E是BC的中點,F在AB上,且BF=,猜想EF與DE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀下面的材料:
小明遇到一個問題:如圖(1),在□ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.如果,求的值.

他的做法是:過點E作EH∥AB交BG于點H,則可以得到△BAF∽△HEF.
請你回答:(1)AB和EH的數(shù)量關(guān)系為    ,CG和EH的數(shù)量關(guān)系為    ,的值為    .
(2)如圖(2),在原題的其他條件不變的情況下,如果,那么的值為    (用含a的代數(shù)式表示).

(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F. 如果,那么的值為    (用含m,n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強(qiáng)相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點,試探究AB和BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC和△是以坐標(biāo)原點O為位似中心的位似圖形,且點B(3,1),B′(6,2).

(1)請你根據(jù)位似的特征并結(jié)合點B的坐標(biāo)變化回答下列問題: ①若點A(,3),則A′的坐標(biāo)為         ;②△ABC與△的相似比為        ;
(2)若△ABC的面積為m,求△A′B′C′的面積.(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)如圖所示,如果你的位置在點A,你能看到后面那座高大的建筑物嗎?為什么?

(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當(dāng)你至少與M樓相距多少m時,才能看到后面的N樓?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點).

(1)若以格點P、A、B為頂點的三角形與△ABC相似但不全等,請作出所有符合要求的點P;
(2)請寫出符合條件格點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知在△ABC中,∠ABC=90°,AB=3,BC=4.點Q是線段AC上的一個動點,過點Q作AC的垂線交線段AB(如圖1)或線段AB的延長線(如圖2)于點P.

(1)當(dāng)點P在線段AB上時,求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時,求AP的長.

查看答案和解析>>

同步練習(xí)冊答案