如圖,在直線m上擺放著三個正三角形:△ABC、△HFG、△DCE,已知BC=GE,F(xiàn)、G分別是BC、CE的中點,F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個平行四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S2等于


  1. A.
    7
  2. B.
    8
  3. C.
    9
  4. D.
    10
B
分析:首先要弄清的是S1與S△OFC(即a)、S3與S△GNE(即b)的關(guān)系;以前者為例,若設(shè)△OFC中,OC邊上的高為h,則a=OC•h,而S1=OA•h;由于BF=FC,且△BMF、△FOC都是等邊三角形,故OA=BF=FC=OC,由此發(fā)現(xiàn)S1=2a,同理S3=2b;由于△OFC和△GNE都是等邊三角形,所以它們都相似,且相似比為1:2(因為BC=GE=2FC),故b=4a,a+b=5a=(S1+S3)=10,由此可得a=2,b=4;然后按照上面的方法證S2與S△PCG(即b)的關(guān)系,從而得到S2的面積.
解答:解:如圖;(a、b分別表示△OFC、△GNE的面積)
∵F、G分別是BC、CE的中點,
∴△BMF、△OFC以及△CPG、△GNE都是全等的等邊三角形;
∴S△CPG=b;
設(shè)M到AC的距離為h,則S1=OA•h,a=OC•h;
∵OA=MF=OC,∴S1=2a,同理可得S3=2b;
易知△OFC∽△NGE,則a:b=FC2:GE2=1:4,即b=4a;
∵a+b=(S1+S3)=10,故a=2,b=8;
∴S△PCG=b=8;
梯形COHG中,PH=OC=FM=CG=PG,同上可證得S2=S△CPG;
所以S2=b=8,故選B.
點評:此題主要考查了等邊三角形、平行四邊形的性質(zhì),相似三角形的性質(zhì)及圖形面積的求法;此題主要運用相似三角形的對應邊成比例及面積比等于相似比的平方求解,能夠發(fā)現(xiàn)△OFC、△GEN的面積之間的關(guān)系是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直線m上擺放著三個正三角形:△ABC、△HFG、△DCE,已知BC=
12
CE,F(xiàn)、G分別是BC、CE的中點,F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個平行四邊形的面積依次是S1,S,S3,若S1+S3=10,則S=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直線m上擺放著三個正三角形:△ABC、△HFG、△DCE,已知BC=GE,F(xiàn)、G分別是BC、CE的中點,F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個平行四邊形的面積依次是S1,S2,S3,若S1+S3=20,則S2等于(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直線l上擺放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列問題:
精英家教網(wǎng)
(1)旋轉(zhuǎn):將△ABC繞點C順時針方向旋轉(zhuǎn)90°,請你在圖中作出旋轉(zhuǎn)后的對應圖形△A1B1C,并求出AB1的長度;
(2)翻折:將△A1B1C沿過點B1且與直線l垂直的直線翻折,得到翻折后的對應圖形△A2B1C1,試判定四邊形A2B1DE的形狀并說明理由;
(3)平移:將△A2B1C1沿直線l向右平移至△A3B2C2,若設(shè)平移的距離為x,△A3B2C2與直角梯形重疊部分的面積為y,當y等于△ABC面積的一半時,x的值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河南模擬)如圖,在直線l上擺放著三個等邊三角形:△ABC、△HFG、△DCE,已知BC=
12
CE,F(xiàn)、G分別是BC、CE的中點,F(xiàn)M∥AC,GN∥DC.設(shè)圖中三個平行四邊形的面積一依次是S1,S2,S3若S1+S3=10,則S2=
4
4

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(48):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在直線l上擺放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列問題:

(1)旋轉(zhuǎn):將△ABC繞點C順時針方向旋轉(zhuǎn)90°,請你在圖中作出旋轉(zhuǎn)后的對應圖形△A1B1C,并求出AB1的長度;
(2)翻折:將△A1B1C沿過點B1且與直線l垂直的直線翻折,得到翻折后的對應圖形△A2B1C1,試判定四邊形A2B1DE的形狀并說明理由;
(3)平移:將△A2B1C1沿直線l向右平移至△A3B2C2,若設(shè)平移的距離為x,△A3B2C2與直角梯形重疊部分的面積為y,當y等于△ABC面積的一半時,x的值是多少.

查看答案和解析>>

同步練習冊答案