如圖,△ABC中,E、F分別是AB、AC上的兩點,且,若△AEF的面積為2,則四邊形EBCF的面積為   
【答案】分析:根據(jù)題意可判定△AEF∽△ABC,利用面積比等于相似比平方可得出△ABC的面積,繼而根據(jù)S四邊形EBCF=S△ABC-S△AEF,即可得出答案.
解答:解:∵
∴EF∥BC,
∴△AEF∽△ABC,
=(2=(2=,
∴S△ABC=18,
則S四邊形EBCF=S△ABC-S△AEF=18-2=16.
故答案為:16.
點評:本題考查了相似三角形的判定與性質,解答本題的關鍵是證明△AEF∽△ABC,要求同學們熟練掌握相似三角形的面積比等于相似比平方.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案