如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24m,MG=8m,MC=6m,則陰影部分地的面積是(  )m2
分析:根據(jù)平移的性質(zhì)可得CD=GH,陰影部分的面積等于四邊形DMGH的面積,再求出MD的長度,然后根據(jù)梯形的面積公式列式計算即可得解.
解答:解:由平移的性質(zhì)得,CD=GH=24m,
陰影部分的面積=四邊形DMGH的面積,
∵MC=6m,
∴MD=CD-NC=24-6=18m,
∴陰影部分地的面積=
1
2
(MD+GH)•MG=
1
2
×(18+24)×8=168m2
故選A.
點評:本題考查了平移的性質(zhì),根據(jù)平移前后的兩個圖形能夠互相重合判斷出陰影部分的面積等于四邊形DMGH的面積是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,AB⊥BC,BC=3AD,CD=4AD,E、F為兩腰的中點,下面給出四個精英家教網(wǎng)結(jié)論:
①∠BCD=60°           ②∠CED=90°
③△ADE∽△EDC        ④
AE
AB
=
EF
BC

其中正確的有
 
(要求:把正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AB=3cm,AD=14cm,BC=10cm,動點P從D點精英家教網(wǎng)出發(fā),沿DA方向以2cm/秒的速度運動,運動時間為t秒.
(1)當(dāng)t為何值時,以PDCB為頂點的四邊形是平行四邊形;
(2)當(dāng)t為何值時,以PCD為頂點的三角形是直角三角形;
(3)問:在點P的運動過程中,梯形內(nèi)是否存在這樣的點Q,使得過PQ的直線與BC相交且把梯形ABCD分成面積相等的兩部分?若存在,請你用一句話概括出Q點的位置;否則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.動點P從點B出發(fā),沿射線BC的方向以每秒3個單位長的速度運動,動點Q從點D出發(fā),在線段DA上以每秒1個單位長的速度向點A運動,點P、Q分別從點B、D同時出發(fā),當(dāng)點Q運動到點A時,點P隨之停止運動,設(shè)運動的時間為t秒.

(1)當(dāng)t為何值時,P、Q兩點之間的距離是13?
(2)當(dāng)t為何值時,以P、Q、C、D為頂點的四邊形為平行四邊形?
(3)是否存在某一時刻t,使直線PQ恰好把直角梯形ABCD的周長和面積同時等分?如存在,求出此時t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇徐州城北中學(xué)七年級3月綜合練習(xí)(一)數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,把直角梯形ABCD沿射線AB的方向平移到直角梯形EFGH的位置.已知BC=12,CD=10,CI=2, HI=7.則圖中陰影部分的面積是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆江蘇徐州七年級3月綜合練習(xí)(一)數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,把直角梯形ABCD沿射線AB的方向平移到直角梯形EFGH的位置.已知BC=12,CD=10,CI=2, HI=7.則圖中陰影部分的面積是     

 

查看答案和解析>>

同步練習(xí)冊答案