【題目】去年3月,某炒房團以不多于2224萬元不少于2152萬元的資金分別從A城、B城買入小戶型二手房(80平方米/套)共4000平方米.其中A城、B城的購入價格分別為4000元/平方米、7000元/平方米.自住建部今年5月約談成都市政府負責(zé)同志后,成都市進一步加大了調(diào)控政策.某炒房團為拋售A城的二手房,決定從6月起每平方米降價1000元.如果賣出相同平方米的房子,那么5月的銷售額為640萬元,6月的銷售額為560萬元.
(1)A城今年6月每平方米的售價為多少元?
(2)請問去年3月有幾種購入方案?
(3)若去年三月所購房產(chǎn)全部沒有賣出,炒房團計劃在7月執(zhí)行銷售方案:B城售價為1.05萬元/平方米,并且每售出一套返還該購房者a元;A城按今年6月的價格進行銷售。要使(2)中的所有方案利潤相同,求出a應(yīng)取何值?
【答案】(1)A城今年6月每平方米的售價為元;(2)方案有四種,如表所示見解析;(3)應(yīng)取40000元.
【解析】
(1)設(shè)A城今年6月每平方米的售價為x元,根據(jù)賣出相同平米房子的等量條件,列出分式方程,解分式方程即可;
(2)設(shè)去年3月從A城購進套,則根據(jù)“不多于2224萬元不少于2152萬元的資金”列出不等式,解不等式,根據(jù)不等式的限制即可確定可能方案;
(3)設(shè)A城有套,總利潤為元,列出A城售出套數(shù)和總利潤的關(guān)系式,最后根據(jù)與(2)利潤相同,即可解答.
(1)設(shè)A城今年6月每平方米的售價為x元,則
解之得:
經(jīng)檢驗:是原方程的根.
答:A城今年6月每平方米的售價為元.
(2)設(shè)去年3月從A城購進套,則
解之得:
∴方案有四種,如下表所示:
方案 | 一 | 二 | 三 | 四 |
A城(套) | 24 | 25 | 26 | 27 |
B城(套) | 26 | 25 | 24 | 23 |
(3)設(shè)A城有套,總利潤為元,則
∴
∵所有方案利潤相同
∴0000元
答:應(yīng)取40000元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,與x軸交于點C,過點A作AH⊥x軸于點H,點O是線段CH的中點,AC=,tan∠ACH=2,且點B的坐標為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是△ABC的外接圓的圓心,∠ABC=60°,BF,CE分別是AC,AB邊上的高且交于點H,CE交⊙O于M,D,G分別在邊BC,AB上,且BD=BH,BG=BO,下列結(jié)論:①∠ABO=∠HBC;②ABBC=2BFBH;③BM=BD;④△GBD為等邊三角形,其中正確結(jié)論的序號是( )
A.①② B.①③④ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l平行x軸,交y軸于點A,第一象限內(nèi)的點B在l上,連結(jié)OB,動點P滿足∠APQ=90°,PQ交x軸于點C.
(1)當動點P與點B重合時,若點B的坐標是(2,1),求PA的長.
(2)當動點P在線段OB的延長線上時,若點A的縱坐標與點B的橫坐標相等,求PA:PC的值.
(3)當動點P在直線OB上時,點D是直線OB與直線CA的交點,點E是直線CP與y軸的交點,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在對Rt△OAB依次進行位似、軸對稱和平移變換后得到△O′A′B′.
(1)在坐標紙上畫出這幾次變換相應(yīng)的圖形;
(2)設(shè)P(x,y)為△OAB邊上任一點,依次寫出這幾次變換后點P對應(yīng)點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a,b,﹣b,c連接起來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分c1與經(jīng)過點A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點C的坐標為(0,﹣ ),點M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點.
(1)求A、B兩點的坐標;
(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;
(3)當△BDM為直角三角形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為24cm的等邊三角形ABC中,點P從點A開始沿AB邊向點B以每秒鐘2cm的速度移動,點Q從點B開始沿BC邊向點C以每秒鐘4cm的速度移動.若P、Q分別從A、B同時出發(fā),其中任意一點到達目的地后,兩點同時停止運動,求:
(1)經(jīng)過6秒后,BP= cm,BQ= cm;
(2)經(jīng)過幾秒△BPQ的面積等于?
(3)經(jīng)過幾秒后,△BPQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,是的邊上的中線.
(1)①用尺規(guī)完成作圖:延長到點,使,連接;
② 若,求的取值范圍;
(2)如圖2,當時,求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com