已知:點P為正方形ABCD內(nèi)部一點,且∠BPC=90°,過點P的直線分別交邊AB、邊CD于點E、點F.
(1)如圖1,當(dāng)PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關(guān)系為 _________ ;
(2)如圖2,當(dāng)PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG;
(3)在(2)的條件下,Q為AD邊上一點,且∠PQF=90°,連接BD,BD交QF于點N,若S△bpc=80,BE=6.求線段DN的長.
(1)S△PBE+S△PCF=S△BPC; (2)見解析 (3)DN=2或3
解析試題分析:(1)如圖1所示:過點P作PI⊥BC于點I,
∵PB=PC,
∴PI∥BE∥CF,
∴PI是梯形BCFE的中位線,
∴PI=(BE+CF),
∵△PBC是等腰直角三角形,
∴PI=AB=CI,
∴S△PBE+S△PCF=BE•BI+CF•CI=BE×BC+CF•BC=BC(BE+CF)=BC•PI=S△PBC;
故答案為:S△PBE+S△PCF=S△BPC;
(2)如圖2,過點P作PG⊥EF交BC于點G,∠EPG=90°,
∵∠BPC=90°,
∴∠EPB+∠BPG=90°,
∵∠BPG+∠CPG=90°,
∴∠EPB=∠CPG,
同理,∵∠EBP+∠PBC=90°,∠PBC+∠BCP=90°,
∴∠EBP=∠BCP,
∴△EPB∽△GPC,
∵PC=2PB,
∴=()2=
∴S△GPC=4S△EPB,
同理可得S△FPC=4S△GPB,
∵S△PBG+S△PGC=S△BPC,
∴16S△PBE+S△PFC=4S△BPC;
(3)如圖3,設(shè)正方形的邊長為a(a>0),
∵∠BPC=90°,PC=2PB,S△BPC=80,
∴••=80,解得a=20,
由(2)知,△EPB∽△GPC,
∴CG=2BE=12,
∴BG=8,
∴CF=16,DF=4,
過點P作PM∥AB交BC于點M.交AD于點H,過點P作PT⊥CD于T,
∵PM⊥BC,BC=20,S△BPC=80,
∴PM=8,
∴PH=12,PT=16,F(xiàn)T=8,
∵∠PQF=90°,
∴由勾股定理得,(HQ2+HP2)+(DQ2+DF2)=PT2+TF2,即(16﹣DQ)2+122+(DQ2+42)=162+82,解得DQ=4或DQ=12,
當(dāng)DQ=4時,
∵DQ=DF=4,∠PQF=90°,DN為∠QDF的角平分線,
∴DN=QD=2;
當(dāng)DQ=12時,過點N作NN1⊥QD于N1,
∵∠QOF=90°,DN為∠QDF的角平分線,
∴∠QDN=45°,
∵NN1⊥AD,
∴NN1=N1D,△QDF∽△QN1N,
∴=,=,解得NN1=3,
∴DN===3,
綜上所述,DN=2或3.
考點:相似形綜合題;勾股定理;正方形的性質(zhì);相似三角形的判定與性質(zhì).
點評:本題考查的是相似形的綜合題,涉及到相似三角形的判定與性質(zhì)、正方形的性質(zhì)、等腰三角形的性質(zhì)及勾股定理,解答此題的關(guān)鍵是作出輔助線,構(gòu)造出相似三角形,再利用相似三角形的性質(zhì)進行解答.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定解答題(解析版) 題型:解答題
已知:點P為正方形ABCD內(nèi)部一點,且∠BPC=90°,過點P的直線分別交邊AB、邊CD于點E、點F.
(1)如圖1,當(dāng)PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關(guān)系為 _________ ;
(2)如圖2,當(dāng)PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG;
(3)在(2)的條件下,Q為AD邊上一點,且∠PQF=90°,連接BD,BD交QF于點N,若S△bpc=80,BE=6.求線段DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年黑龍江省哈爾濱市道外區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com