【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問(wèn)題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說(shuō)明理由.
【答案】(1)S=(x﹣2)2+4;x=2,最小值為4;(2)存在,理由見(jiàn)解析.
【解析】
試題分析:(1)可用x表示出AQ、BQ、BP、CP,從而可表示出S△ADQ、S△BPQ、S△PCD的面積,則可表示出S,再利用二次函數(shù)的增減性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,當(dāng)QP⊥DP時(shí),可證明△BPQ∽△CDP,利用相似三角形的性質(zhì)可得到關(guān)于x的方程,可求得x的值.
試題解析:(1)∵四邊形ABCD為矩形, ∴BC=AD=4,CD=AB=3, 當(dāng)運(yùn)動(dòng)x秒時(shí),則AQ=x,BP=x,
∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,
∴S△ADQ=ADAQ=×4x=2x,S△BPQ=BQBP=(3﹣x)x=x﹣x2,S△PCD=PCCD=(4﹣x)3=6﹣x,
又S矩形ABCD=ABBC=3×4=12,
∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)=x2﹣2x+6=(x﹣2)2+4,
即S=(x﹣2)2+4, ∴S為開(kāi)口向上的二次函數(shù),且對(duì)稱軸為x=2,
∴當(dāng)0<x<2時(shí),S隨x的增大而減小,當(dāng)2<x≤3時(shí),S隨x的增大而增大,
又當(dāng)x=0時(shí),S=5,當(dāng)S=3時(shí),S=,但x的范圍內(nèi)取不到x=0,
∴S不存在最大值,當(dāng)x=2時(shí),S有最小值,最小值為4;
(2)存在,理由如下:
由(1)可知BQ=3﹣x,BP=x,CP=4﹣x, 當(dāng)QP⊥DP時(shí),則∠BPQ+∠DPC=∠DPC+∠PDC,
∴∠PQ=∠PDC,且∠B=∠C, ∴△BPQ∽△PCD,
∴=,即=,解得x=(舍去)或x=,
∴當(dāng)x=時(shí)QP⊥DP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b,c是同一平面內(nèi)任意三條直線,交點(diǎn)可能有( )
A. 1個(gè)或2個(gè)或3個(gè) B. 0個(gè)或1個(gè)或2個(gè)或3個(gè)
C. 1個(gè)或2個(gè) D. 都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y=x2﹣3x+m與y軸相交于點(diǎn)A,拋物線的對(duì)稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.
(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.
①點(diǎn)B的坐標(biāo)為( 、 ),BK的長(zhǎng)是 ,CK的長(zhǎng)是 ;
②求點(diǎn)F的坐標(biāo);
③請(qǐng)直接寫出拋物線的函數(shù)表達(dá)式;
(2)將矩形OCDE沿著經(jīng)過(guò)點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過(guò)點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開(kāi)始沿線段EH向點(diǎn)H運(yùn)動(dòng),至與點(diǎn)N重合時(shí)停止,△MOG和△NOG的面積分別表示為S1和S2,在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請(qǐng)直接寫出變化范圍;若不變,請(qǐng)直接寫出這個(gè)值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△AOB中,∠AOB=90°,OA在x軸上,OB在y軸上,點(diǎn)A,B的坐標(biāo)分別為(,0),(0,1),把Rt△AOB沿著AB對(duì)折得到Rt△AO′B,則點(diǎn)O′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知小明與小亮兩人在同一地點(diǎn),若小明向北直走160 m,再向東直走80 m,可到購(gòu)物中心,則小亮向西直走____m后,他與購(gòu)物中心的距離為340 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一時(shí)刻,身高1.6m的小強(qiáng)的影長(zhǎng)是1.2m,旗桿的影長(zhǎng)是15m,則旗桿高為( )
A. 16m B. 18m C. 20m D. 22m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x2+mxy+4y2是完全平方式,則常數(shù)m的值為( 。
A. 4 B. ﹣4
C. ±4 D. 以上結(jié)果都不對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com