(2009•婁底)如圖,AB是⊙O的弦,OD⊥AB于D交⊙O于E,則下列說(shuō)法錯(cuò)誤的是( )

A.AD=BD
B.∠ACB=∠AOE
C.
D.OD=DE
【答案】分析:由垂徑定理和圓周角定理可證,AD=BD,AD=BD,,而點(diǎn)D不一定是OE的中點(diǎn),故D錯(cuò)誤.
解答:解:∵OD⊥AB
∴由垂徑定理知,點(diǎn)D是AB的中點(diǎn),有AD=BD,,
∴△AOB是等腰三角形,OD是∠AOB的平分線,
有∠AOE=∠AOB,
由圓周角定理知,∠C=∠AOB,
∴∠ACB=∠AOE,
故A、B、C正確,
D中點(diǎn)D不一定是OE的中點(diǎn),故錯(cuò)誤.
故選D.
點(diǎn)評(píng):本題利用了垂徑定理,等腰三角形的性質(zhì)和圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:填空題

(2009•婁底)如圖,已知AB是⊙O的直徑,PB是⊙O的切線,PA交⊙O于C,AB=3cm,PB=4cm,則BC=    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•婁底)如圖,在△ABC中,AB=AC,D是BC的中點(diǎn),連接AD,在AD的延長(zhǎng)線上取一點(diǎn)E,連接BE,CE.
(1)求證:△ABE≌△ACE;
(2)當(dāng)AE與AD滿足什么數(shù)量關(guān)系時(shí),四邊形ABEC是菱形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•婁底)如圖所示,每個(gè)小方格都是邊長(zhǎng)為1的正方形,以O(shè)點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系.
(1)畫(huà)出四邊形OABC關(guān)于y軸對(duì)稱的四邊形OA1B1C1,并寫(xiě)出點(diǎn)B1的坐標(biāo)是______;
(2)畫(huà)出四邊形OABC繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的四邊形OA2B2C2,并求出點(diǎn)C旋轉(zhuǎn)到點(diǎn)C2經(jīng)過(guò)的路徑的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖南省婁底市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•婁底)如圖,已知AB是⊙O的直徑,PB是⊙O的切線,PA交⊙O于C,AB=3cm,PB=4cm,則BC=    cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案