問(wèn)題解決:如圖是一塊長(zhǎng)方形ABCD的運(yùn)動(dòng)場(chǎng)地,長(zhǎng)AD=101m,寬AB=52m,從B,C兩處入口的兩條小路寬度相等,兩條小路匯合處的路寬為B,C處入口寬的2倍,其余部分種植草坪,若草坪面積為5049m2,求B、C處入口小路的寬.

解:設(shè)B、C處入口小路的寬為xm,
由題意可得,101×52-101x-(52-x)×2x=5049,
整理得,2x2-205x+203=0,
解得,x1=1,x2=>52(舍去),
∴B、C處入口小路的寬為1m.
分析:由題意,令B、C處入口小路的寬為x,則可得,草坪面積=長(zhǎng)方形ABCD的面積-101x-(52-x)×2x,代入數(shù)值,計(jì)算出即可;
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)和一元二次方程的應(yīng)用,正確表示出小路的面積,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究規(guī)律:
已知,如圖1,直線m∥n,A、B為直線n上的兩點(diǎn),C、P為直線m上的兩點(diǎn).若A、B、C為三個(gè)定點(diǎn),P為動(dòng)點(diǎn),則
(1)△PAB與△CAB的面積大小關(guān)系為
 
;
(2)請(qǐng)你在圖1中再畫(huà)出一個(gè)與△ABC面積相等的△DEF,并說(shuō)明面積相等的理由.
解決問(wèn)題:
問(wèn)題1:如圖2,在?ABCD中,點(diǎn)P是CD上任意一點(diǎn),
則S△PAB
 
S△ADP+S△BCP(填寫(xiě)“>”、“<”或“=”).
問(wèn)題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個(gè)底面為圓形的建筑物,點(diǎn)O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過(guò)公路邊(AB)上一點(diǎn)P,請(qǐng)你確定點(diǎn)P的位置,并畫(huà)出分割線,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題解決:如圖是一塊長(zhǎng)方形ABCD的運(yùn)動(dòng)場(chǎng)地,長(zhǎng)AD=101m,寬AB=52m,從B,C兩處入口的兩條小路寬度相等,兩條小路匯合處的路寬為B,C處入口寬的2倍,其余部分種植草坪,若草坪面積為5049m2,求B、C處入口小路的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)在四邊形ABCD中,AD=a,CD=b,點(diǎn)E在射線BA上,點(diǎn)F在射線BC上.

觀察計(jì)算:

(1)如圖①,若四邊形ABCD是矩形,E是AB的中點(diǎn).F是BC的中點(diǎn),則四邊形DEBF   的面積S四邊形DEBF=_______.

(2)若四邊形ABCD是平行四邊形,E是AB的中點(diǎn),F(xiàn)是BC的中點(diǎn),則S四邊形DEBF:S四邊形ABCD=_______.

(3)如圖②,若四邊形ABCD是平行四邊形,且BE:AB=2:3,BF:BC=2:3,則S四邊形DEBF:S四邊形ABCD=_______.

探索規(guī)律:

如圖③,在四邊形ABCD中,若BE:AB=n:m,BF:BC=n:m,試猜想S四邊形DEBF:S四邊形ABCD=_______,請(qǐng)說(shuō)明理由.

   解決問(wèn)題:

   如圖④,某小區(qū)角落有一四邊形空地,為了充分利用空間,美化環(huán)境,想把它沿兩側(cè)墻壁改造為一塊綠地,使綠地面積是原空地面積的3倍.請(qǐng)分別在兩側(cè)墻壁上確定點(diǎn)E、F,畫(huà)出改造線DE、DF,并寫(xiě)出作法.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省九江市九江縣城門(mén)中學(xué)九年級(jí)(上)期中復(fù)習(xí)數(shù)學(xué)試卷(解析版) 題型:解答題

問(wèn)題解決:如圖是一塊長(zhǎng)方形ABCD的運(yùn)動(dòng)場(chǎng)地,長(zhǎng)AD=101m,寬AB=52m,從B,C兩處入口的兩條小路寬度相等,兩條小路匯合處的路寬為B,C處入口寬的2倍,其余部分種植草坪,若草坪面積為5049m2,求B、C處入口小路的寬.

查看答案和解析>>

同步練習(xí)冊(cè)答案