(1)操作發(fā)現(xiàn)

如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE.且點G在矩形ABCD內部.小明將BG延長交DC于點F,認為GF=DF,你同意嗎?請說明理由.

(2)問題解決保持(1)中的條件不變,若DF="4" , CD="9" ,求的值.

(3)類比探究保持(1)中的條件不變,若DC=2DF,求的值.

 

【答案】

(1)同意.證明 Rt△EGF≌ Rt△EDFGF = DF.   (2)   (3)= 

【解析】

試題分析:(1)同意;理由如下:將△ABE沿BE折疊后得到△GBE,所以;矩形ABCD中,E是AD的中點,所以EG=ED,;又因為EF是的公共邊,且是斜邊,所以Rt△EGF≌ Rt△EDF,所以GF = DF.

(2)矩形ABCD中,AB=CD,AD=BC,;將△ABE沿BE折疊后得到△GBE,△ABE△GBE,AB=BG=9;由(1)知證明 Rt△EGF≌ Rt△EDFGF = DF,GF=4;所以BF=BG+GE=9+4=13;CF=CD-DF=9-4=5;在Rt△BFC中由勾股定理得BC=,所以=

(3)若DC=2DF,所以F是DC的中點,DF=CF

矩形ABCD中,AB=CD,AD=BC,;將△ABE沿BE折疊后得到△GBE,△ABE△GBE,AB=BG

,BG=AB=2DF;由(1)知證明 Rt△EGF≌ Rt△EDFGF = DF;所以BF=BG+GE=3DF;;在Rt△BFC中由勾股定理得BC=,所以=

考點:折疊,三角形全等,勾股定理

點評:本題考查折疊,三角形全等,勾股定理,考生要掌握折疊的性質,掌握判定兩個三角形全等的方法,會證明兩個三角形全等,熟悉勾股定理的內容

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•河南)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉,當點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關系是
DE∥AC
DE∥AC
;
②設△BDC的面積為S1,△AEC的面積為S2,則S1與S2的數(shù)量關系是
S1=S2
S1=S2


(2)猜想論證
當△DEC繞點C旋轉到如圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使S△DCF=S△BDE,請直接寫出相應的BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•曲阜市模擬)(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內部.小明將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.
(2)問題解決
保持(1)中的條件不變,DC=2DF,求
ADAB
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在矩形ABCD內部.延長BG交DC于點F,證明GF=DF;根據(jù)上述證明過程中所添加的輔助線,找出兩兩相似的三個三角形(精英家教網(wǎng)全等除外),并給出證明過程;
(2)問題解決
保持(1)中的條件不變,若DC=2DF,求
AD
AB
的值;
(3)類比探究
保持(1)中的條件不變,若DC=nDF,猜想
AD
AB
的值,直接寫出結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)操作發(fā)現(xiàn)

如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在矩行ABCD內部.小明將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.

(2)問題解決保持(1)中的條件不變,若DC=2DF,求的值;

(3)類比探求保持(1)中條件不變,若DC=nDF,求的值

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)操作發(fā)現(xiàn)
如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,且點G在矩行ABCD內部.小明將BG延長交DC于點F,認為GF=DF,你同意嗎?說明理由.

(2)問題解決保持(1)中的條件不變,若DC=2DF,求的值;
(3)類比探求保持(1)中條件不變,若DC=nDF,求的值

查看答案和解析>>

同步練習冊答案