如圖,⊙O的半徑為4cm,直線l⊥OA,垂足為O,則直線l沿射線OA方向平移______cm時與⊙O相切.
∵直線到圓心的距離等于圓的半徑,直線l與⊙相切,
∴直線l沿射線OA方向平移4cm時與⊙O相切.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙A與y軸交于C、D兩點(diǎn),圓心A的坐標(biāo)為(1,0),⊙A的半徑為
5
,過C作⊙A的切線交x軸于點(diǎn)B.
(1)求切線BC的解析式;
(2)若點(diǎn)P是第一象限內(nèi)⊙A上的一點(diǎn),過點(diǎn)P作⊙A的切線與直線BC相交于點(diǎn)G,且∠CGP=120°,求點(diǎn)G的坐標(biāo);
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點(diǎn)A,使△AEF是直角三角形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的割線PAB交⊙O于點(diǎn)A、B,PA=7cm,AB=5cm,PO=10cm,則⊙O的半徑為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OA、OB是⊙O的兩條半徑,且OA⊥OB,點(diǎn)C是OB延長線上任意一點(diǎn),過點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD交OC于點(diǎn)E,猜想:△DCE是怎樣的三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,Rt△ABC,∠ACB=90°,點(diǎn)E是邊BC上一點(diǎn),過點(diǎn)E作FE⊥BC(垂足為E)交AB于點(diǎn)F,且EF=AF,以點(diǎn)E為圓心,EC長為半徑作⊙E交BC于點(diǎn)D.
(1)求證:斜邊AB是⊙E的切線;
(2)設(shè)若AB與⊙E相切的切點(diǎn)為G,AC=8,EF=5,連DA、DG,求S△ADG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C為圓心,R為半徑所作的圓與斜邊AB有兩個交點(diǎn),則R的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠ABC=30°,AB=10,那么以A為圓心,6為半徑的⊙A與直線BC的位置關(guān)系是(  )
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,BD是⊙O的直徑,AB與⊙O相切于點(diǎn)B,過點(diǎn)D作OA平行線交⊙O于點(diǎn)C,AC與BD的延長線相交于點(diǎn)E.
(1)試探究AE與⊙O的位置關(guān)系,并說明理由;
(2)已知EC=a,ED=b,AB=c,請你思考后,選用以上適當(dāng)?shù)臄?shù)據(jù),計算⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(diǎn)(異于A、B),過點(diǎn)P作半圓O的切線分別交過A、B兩點(diǎn)的切線于D、C,連接OC、BP,過點(diǎn)O作OMCD分別交BC與BP于點(diǎn)M、N.下列結(jié)論:
①S四邊形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點(diǎn)的圓的切線.
其中正確的個數(shù)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案