(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面積.
設梯形OPFE的面積為S.
(1) A(20,0),B(0,20) X|k | B| 1 . c|O |m
∴OA=OB=20,∠A=∠B=45°..
當t=1時,OE=1,AP=3,∴OP=17,EF=BE=19.
∴S=(OP+EF)·OE=18.
(2) OE=t,AP=3t,∴OP=20-3t,EF=BE=20-t.
∴S=(OP+EF)·OE=(20-3t +20-t)·t =-2t2+20t=-2(t-5)2+50.
∴當t=5 (在0<t<范圍內)時,S最大值=50.
當t=t1時,AF1=t1,AP1=3t1;當t=t2時,AF2=t2,AP2=3t2;
∴,又∠A=∠A,∴△AF1P1∽△AF2P2.
科目:初中數(shù)學 來源: 題型:
1 |
x |
1 |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
1 | x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
k |
x |
1 |
8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
50 |
50 |
50 |
2 |
2 |
3 |
3 |
3 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com