以直線為對稱軸的拋物線軸交于AB兩點,其中點A的坐標(biāo)為.

1)求點B的坐標(biāo);

2)設(shè)點MN在拋物線線上,,試比較、的大小.

 

【答案】

1;(2.

【解析】

試題分析:(1根據(jù)拋物線的對稱軸直接解答即可;

(2)先判斷函數(shù)的增減性,再比較大小.

試題解析:(1)由已知,可得:,所以;

⑵∵拋物線開口向下,

在對稱軸左側(cè),的增大而增大;

,

.

考點:二次函數(shù)圖像.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(-1,0),(3,0),(0,3),過A精英家教網(wǎng),B,C三點的拋物的對稱軸為直線l,D為對稱軸l上一動點.
(1)求拋物線的解析式;
(2)求當(dāng)AD+CD最小時點D的坐標(biāo);
(3)以點A為圓心,以AD為半徑作⊙A.
①證明:當(dāng)AD+CD最小時,直線BD與⊙A相切;
②寫出直線BD與⊙A相切時,D點的另一個坐標(biāo):
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

  某水渠的橫截面呈拋物線形,水面的寬為AB(單位:米),F(xiàn)以AB所在直線為x軸.以拋物線的對稱軸為y軸建立如圖所示的平面直角坐標(biāo)系,設(shè)坐標(biāo)原點為O.已知AB=8米。設(shè)拋物線解析式為y=ax2-4.

    (1)求a的值;

    (2)點C(一1,m)是拋物線上一點,點C關(guān)于原點0的對稱點為點D,連接CD、BC、BD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省無錫市南長區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點A(3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(ab,c為常數(shù),且a0)經(jīng)過A、C兩點,并與x軸的正半軸交于點B

(1)m的值及拋物線的函數(shù)表達式;

(2)P是拋物線對稱軸上一動點,△ACP周長最小時,求出P的坐標(biāo);

(3)是否存在拋物在線一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標(biāo);若不存在,請說明理由;

(4)(2)的條件下過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請直接寫出結(jié)果,如果不是請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣西省貴港市九年級第一次教學(xué)質(zhì)量監(jiān)測數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

如圖所示,在平面直角坐標(biāo)系中,頂點為(,)的拋物線交軸于點,交軸于,兩點(點在點的左側(cè)), 已知點坐標(biāo)為(,).

 

 

 

 

 

 

 

(1)求此拋物線的解析式;

(2)過點作線段的垂線交拋物線于點,

如果以點為圓心的圓與直線相切,請判斷拋物

線的對稱軸與⊙有怎樣的位置關(guān)系,并給出證明;

(3)已知點是拋物線上的一個動點,且位于

兩點之間,問:當(dāng)點運動到什么位置時,

面積最大?并求出此時點的坐標(biāo)和的最大面積.

 

查看答案和解析>>

同步練習(xí)冊答案