【題目】在學(xué)校組織的八年級(jí)數(shù)學(xué)競(jìng)賽中,每班參加比賽的人數(shù)相同,成績(jī)分為A,BC,D四個(gè)等級(jí),其中相應(yīng)等級(jí)的得分依次記為90分,80分,70分,60分,學(xué)校將八年級(jí)一班和二班的成績(jī)整理并繪制成如下的統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)提供的信息解答下列問題:

1)此次競(jìng)賽中二班80分以上(包括80分)的人數(shù)為   

2)請(qǐng)你將表格補(bǔ)充完整:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

77.6

80

   

二班

77.6

   

90

3)請(qǐng)從不同角度對(duì)這次競(jìng)賽成績(jī)的結(jié)果進(jìn)行分析.(至少兩個(gè)角度)

【答案】112;(28070;(3)詳見解析.

【解析】

1)根據(jù)條形統(tǒng)計(jì)圖可得每班參賽人數(shù),然后用參賽人數(shù)×(二班A等級(jí)所占百分比+B等級(jí)所占百分比)即得結(jié)果;

2)根據(jù)條形統(tǒng)計(jì)圖中B等級(jí)人數(shù)最多可得一班成績(jī)的眾數(shù);由上題中求得的總?cè)藬?shù)分別求出二班各個(gè)成績(jī)段的人數(shù),然后即可求出二班成績(jī)的中位數(shù);

3)從中位數(shù)和眾數(shù)兩個(gè)角度作出合理的分析即可.

解:(1)一班參賽人數(shù)為:6+12+2+525(人),

∵兩班參賽人數(shù)相同,∴二班成績(jī)?cè)?/span>80分以上(包括80分)的人數(shù)為25×44%+4%)=12人;

故答案為:12

2)由于條形統(tǒng)計(jì)圖中B等級(jí)人數(shù)最多,∴一班成績(jī)的眾數(shù)是80分;

二班得90分的為:25×44%=11人,得80分的為:25×4%=1人,得70分的為:25×36%=9人,得60分的為:25×16%=4人,∴二班成績(jī)的中位數(shù)是:70分;

填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

77.6

80

80

二班

77.6

70

90

3)①平均數(shù)相同的情況下,從兩個(gè)班的眾數(shù)看,由于9080,∴二班的成績(jī)更好一些;

②從兩個(gè)班的中位數(shù)來看,由于8070,∴一班的成績(jī)比一班好,但二班D等級(jí)的人數(shù)比一班少,∴綜合來看,二班成績(jī)要稍好一些.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是ABC的邊AB上一點(diǎn),O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點(diǎn)A21),B(-1n兩點(diǎn).

(1)求反比例函數(shù)的解析式;

(2)求一次例函數(shù)的解析式;

(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖荆碆、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分~74分;D級(jí):60分以下)

(1)求出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;

(2)求出扇形統(tǒng)計(jì)圖(圖2)中C級(jí)所在的扇形圓心角的度數(shù);

(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:;

2)列分式方程解應(yīng)用題:

用電腦程序控制小型賽車進(jìn)行比賽,暢想號(hào)逐夢(mèng)號(hào)兩賽車進(jìn)入了最后的決賽.比賽中,兩車從起點(diǎn)同時(shí)出發(fā),暢想號(hào)到達(dá)終點(diǎn)時(shí),逐夢(mèng)號(hào)離終點(diǎn)還差.從賽后數(shù)據(jù)得知兩車的平均速度相差.暢想號(hào)的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(2,1),(1,1)兩點(diǎn),則下列關(guān)于此二次函數(shù)的說法正確的是【 】

A.y的最大值小于0      B.當(dāng)x=0時(shí),y的值大于1

C.當(dāng)x=1時(shí),y的值大于1  D.當(dāng)x=3時(shí),y的值小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).

求這個(gè)二次函數(shù)的表達(dá)式.

連接、,并把沿翻折,得到四邊形,那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大?求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中有一格點(diǎn)三角形,該三角形的三個(gè)頂點(diǎn)為:A(1,1),B(﹣3,1),C(﹣3,﹣1).

(1)若△ABC的外接圓的圓心為P,則點(diǎn)P的坐標(biāo)為_____,P的半徑為_____

(2)如圖所示,在11×8的網(wǎng)格圖內(nèi),以坐標(biāo)原點(diǎn)O點(diǎn)為位似中心,將△ABC按相似比2:1放大,A、B、C的對(duì)應(yīng)點(diǎn)分別為A'、B'、C'.①畫出△A'B'C';②將△A'B'C'沿x軸方向平移,需平移_____個(gè)單位長(zhǎng)度,能使得B'C'所在的直線與⊙P相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)Ax1,y1Bx2,y2,當(dāng)y1y2時(shí),試比較x1x2的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案