【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD.

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當DM=1時,求MN的長.

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)由圓周角推論可得∠A+∠ABD=90°,由切線性質(zhì)可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;

(2)由角平分線及三角形外角性質(zhì)可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根據(jù)勾股定理可求得MN的長.

試題解析:(1)如圖,連接OD,∵AB為⊙O的直徑,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD與⊙O相切于點D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;

(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在以下現(xiàn)象中,屬于平移的是(
①在擋秋千的小朋友;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④傳送帶上,瓶裝飲料的移動.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點Pm2,m+1)在y軸上,則點P的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點D,∠ABD=∠ACB.

(1)求證:AB是圓的切線;

(2)若點E是BC上一點,已知BE=4,tan∠AEB=,AB:BC=2:3,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解一元一次方程的基本步驟去分母,移項、去括號、合并同類項,化為ax=b的形式,求出x.
解方程:
(1)
(2) ;
(3)
(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠CAD.

(1)求證:直線MN是⊙O的切線;

(2)若CD=3,∠CAD=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一條長40cm的繩子圍成一個面積為64cm2的矩形.設矩形的一邊長為xcm,則可列方程為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線(m>0)與x軸的交點為A,B

1)求拋物線的頂點坐標;

2)橫、縱坐標都是整數(shù)的點叫做整點.

m1時,求線段AB上整點的個數(shù);

若拋物線在點AB之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個整點,結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】﹣27的立方根與4的平方根的和是_____

查看答案和解析>>

同步練習冊答案