如圖,在四邊形ABCD中,DB平分∠ADC,∠ABC=120°,∠C=60°,∠BDC=;延長CD到點E,連接AE,使得∠E=∠C.
(1)求證:四邊形ABDE是平行四邊形;
(2)若DC=12,求AD的長.
(1)見解析 (2)6
【解析】(1)證明:∵ ∠ABC=120°,∠C=60°,
∴ ∠ABC+∠C=180°,
∴ AB∥DC,即AB∥ED.
又∵ ∠C=60°,∠E=∠C,∠BDC=30°,
∴ ∠E=∠BDC=30°,∴ AE∥BD.
∴ 四邊形ABDE是平行四邊形.
(2)解:由(1)得AB∥DC,AB≠DC,
∴ 四邊形ABCD是梯形.
∵ DB平分∠ADC,∠BDC=30°,
∴ ∠ADC=∠C=60°.
∴ 四邊形ABCD是等腰梯形,
∴ BC=AD.
∵ 在△BCD中,∠C=60°,∠BDC=30°,
∴ ∠DBC=90°.
又已知DC=12,∴ AD=BC=DC=6.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com