如圖,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上運動(不與B、C重合),過D點分別向AB、AC作垂線,垂足分別為E、F,則矩形AEDF的面積的最大值為   
【答案】分析:首先設DE=x.依題意求出△BDE∽△BCA,然后根據(jù)矩形的面積以及二次函數(shù)求最值的方法求解.
解答:解:設DE=x.
∵DE∥AC,
∴△BDE∽△BCA.
,BE=,則AE=4-
則矩形AEDF的面積是x(4-)=-+4x,根據(jù)二次函數(shù)求最值的方法,知矩形面積的最大值是=3.
故答案為:3.
點評:此類要求最大值的題,首先要建立函數(shù)關系式,再進一步根據(jù)函數(shù)來分析.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(2)求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內切圓⊙0與BC、CA、AB分別切于點D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長.

查看答案和解析>>

同步練習冊答案