已知,如圖,在□ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.

(1)求證:△ADE≌△CBF;

(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

 

【答案】

證明:(1)因?yàn)锳BCD是平行四邊形

    所以AD=BC,∠A=∠C,AB=CD

    又因?yàn)镋、F分別為邊AB、CD的中點(diǎn),

    所以AE=CF

    所以△ADE≌△CBF  (SAS)

(2)因?yàn)锳BCD是平行四邊形

AD∥BG,又知AG∥DB

    所以四邊形AGBD是平行四邊形,

    四邊形BEDF是菱形,

    所以DE=BE=AE,

    所以∠DAE=∠ADE,∠EDB=∠DBE

    2∠ADE+2∠EDB=180°

    所以∠ADE+∠EDB=90°

    四邊形AGBD是矩形(有一個(gè)角是直角的平行四邊形是矩形)

【解析】(1)在證明全等時(shí)常根據(jù)已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來(lái)證明全等;(2)先由菱形的性質(zhì)得出AE=BE=DE,再通過(guò)角之間的關(guān)系求出∠ADE+∠EDB=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過(guò)A,D兩點(diǎn)作⊙O(不寫(xiě)作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案