如圖,已知平行四邊形

(1)用直尺和圓規(guī)作出的平分線,交于點,(保留作圖痕跡,不要求寫作法)(2)求證:
(1)圖略(2)見解析
(1)圖略……………………4分
注:圖中邊上的弧各1分,交叉的弧1分
連接點到交叉弧交點得到1分
(2)證明:∵ABCD
∴AB∥DC……………………5分
∴∠2=∠3……………………6分
∵∠1=∠2
∴∠1=∠3……………………8分
∴AE=AD……………………9分
(1)以D為圓心,以任意長為半徑畫弧,交DC和AD于兩點,分別以這兩點為圓心,以大于 這兩點之間的距離為半徑畫弧,兩弧交于一點,過這點作AE即可;
(2)根據(jù)平行四邊形性質得到AB∥CD,得到∠2=∠3,推出∠1=∠3,即可得到答案
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在直角梯形ABCD中,AB⊥BC,AE∥DC交BC于E,O是AC的中點,AB=,
AD=2,BC=3,下列結論:①∠CAE=30°;②四邊形ADCE是菱形;③;④BO⊥CD,其中
正確結論的個數(shù)是(  )
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.

小題1:請寫出一個你學過的四邊形中是等對邊四邊形的圖形的名稱;
小題2:在中,如果是銳角,點分別在上,且.猜想圖中哪個四邊形是等對邊四邊形,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B

小題1:求△ADF∽△DEC.
小題2:AB=4,AD=3根號3,AE=3,求AF的長

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中, E為BC中點,AE的延長線與DC的延長線相交于點F.

小題1:證明:∠DFA=∠FAB;
小題2:證明:△ABE≌△FCE.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形中,的中點,將沿折疊后得到,且點在矩形內部,再延長于點

(1)判斷之長是否相等, 并說明理由.
(2)若,求的值.
(3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為2, 將長為2的線段QF的兩端放在正方形相鄰的兩邊上同時滑動.如果點Q從點A出發(fā),沿圖中所示方向按滑動到點A為止,同時點F從點B出發(fā),沿圖中所示方向按滑動到點B為止,那么在這個過程中,線段QF的中點M所經過的路線長為   ▲   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,動點P從B點出發(fā),沿線段BC向點C作勻速運動;動點Q從點D 出發(fā),沿線段DA向點A作勻速運動.過Q點垂直于AD的射線交AC于點M,交BC于點N.P、Q兩點同時出發(fā),速度都為每秒1個單位長度.當Q點運動到A點,P、Q兩點同時停止運動.設點Q運動的時間為t秒.
小題1:求NC,MC的長(用t的代數(shù)式表示)
小題2:當t為何值時,四邊形PCDQ構成平行四邊形?
小題3:當t為何值時,射線QN恰好將△ABC的面積平分?并判斷此時△ABC的周長是否也被射線QN平分.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在梯形ABCD中,AD∥BC,對角線AC,BD相交于點O,若AD=1,BC=3,則的值為    (    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案