將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB=,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則BC的長為( )

A.
B.2
C.3
D.2
【答案】分析:由三角函數(shù)易得BE,AE長,根據(jù)翻折和對邊平行可得△AEC1和△CEC1為等邊三角形,那么就得到EC長,相加即可.
解答:解:連接CC1
Rt△ABE中,∠BAE=30°,AB=,
易得BE=AB×tan30°=1,AE=2.∠AEB1=∠AEB=60°,
由AD∥BC,那么∠C1AE=∠AEB=60°,
所以△AEC1為等邊三角形,
那么△CC1E也為等邊三角形,
那么EC=EC1=AE=2,
∴BC=BE+EC=3,
故選C.
點評:本題通過折疊變換考查學(xué)生的邏輯思維能力,注意使用翻折前后得到的對應(yīng)邊相等,對應(yīng)角相等這個知識點及相應(yīng)的三角函數(shù)等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將矩形紙片ABCD按如圖所示的方式折疊,得到菱形AECF.若AB=3,則BC的長為( 。
精英家教網(wǎng)
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將矩形紙片ABCD按如圖所示的方式折疊,得到菱形AECF.若AB=6,則B精英家教網(wǎng)C的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將矩形紙片ABCD按如下的順序進行折疊:對折,展平,得折痕EF(如圖①);沿CG折疊,使點B落在EF上的點B′處,(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點C落在DH上的點C′處,(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′,GH(如圖 ⑥).
(1)求圖 ②中∠BCB′的大。
(2)圖⑥中的△GCC′是正三角形嗎?請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•錦州二模)將矩形紙片ABCD按如圖所示的方式折疊,得到菱形AECF.若AB=6,則BC的長為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實踐與運用:
如圖,將矩形紙片ABCD按如下順序進行折疊:對折、展平,得折痕EF(如圖①);沿GC折疊,使點B落在EF上的點B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點C落在DH上的點C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請說明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案