(2004•上海)不等式組整數(shù)解是   
【答案】分析:先求出不等式的解集,在取值范圍內(nèi)可以找到整數(shù)解.
解答:解:由(1)得x,
由(2)得x>-,
所以解集為-<x<,
則整數(shù)解是0,1.
點評:解答此題要先求出不等式組的解集,求不等式組的解集要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2004年上海市部分學(xué)校初三抽樣測試試卷(解析版) 題型:解答題

(2004•上海模擬)如圖,點E在正方形ABCD的邊AB上,AE=1,BE=2.點F在邊BC的延長線上,且CF=BC;P是邊BC上的動點(與點B不重合),PQ⊥EF,垂足為O,并交邊AD于點Q;QH⊥BC,垂足為H.
(1)求證:△QPH∽△FEB;
(2)設(shè)BP=x,EQ=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)試探索△PEQ是否可能成為等腰三角形?如果可能,請求出x的值;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•上海)數(shù)學(xué)課上,老師提出:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A點的坐標(biāo)為(1,0),點B在x軸上,且在點A的右側(cè),AB=OA,過點A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點C和D,直線OC交BD于點M,直線CD交y軸于點H,記點C、D的橫坐標(biāo)分別為xC、xD,點H的縱坐標(biāo)為yH
同學(xué)發(fā)現(xiàn)兩個結(jié)論:
①S△CMD:S梯形ABMC=2:3 ②數(shù)值相等關(guān)系:xC•xD=-yH
(1)請你驗證結(jié)論①和結(jié)論②成立;
(2)請你研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請說明理由);
(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年上海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•上海)數(shù)學(xué)課上,老師提出:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A點的坐標(biāo)為(1,0),點B在x軸上,且在點A的右側(cè),AB=OA,過點A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點C和D,直線OC交BD于點M,直線CD交y軸于點H,記點C、D的橫坐標(biāo)分別為xC、xD,點H的縱坐標(biāo)為yH
同學(xué)發(fā)現(xiàn)兩個結(jié)論:
①S△CMD:S梯形ABMC=2:3 ②數(shù)值相等關(guān)系:xC•xD=-yH
(1)請你驗證結(jié)論①和結(jié)論②成立;
(2)請你研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請說明理由);
(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年上海市民辦中學(xué)“八校聯(lián)考”中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•上海模擬)已知拋物線y=8x2+10x+1
(1)試判斷拋物線與x軸交點情況;
(2)求此拋物線上一點A(-1,-1)關(guān)于對稱軸的對稱點B的坐標(biāo);
(3)是否存在一次函數(shù)與拋物線只交于B點?若存在,求出符合條件的一次函數(shù)的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2004•上海)附加題:在△ABC中,∠BAC=90°,AB=AC=,⊙A的半徑為1,如圖所示.若點O在BC上運動(與點B、C不重合),設(shè)BO=x,△AOC的面積為y.
(1)求關(guān)于x的函數(shù)解析式,并寫出函數(shù)的定義域;
(2)以點O為圓心,BO長為半徑作⊙O,求當(dāng)⊙O與⊙A相外切時,△AOC的面積.

查看答案和解析>>

同步練習(xí)冊答案