【題目】已知點O為直線AB上的一點,∠BOC=∠DOE=90°
(1)如圖1,當(dāng)射線OC、射線OD在直線AB的兩側(cè)時,請回答結(jié)論并說明理由;
①∠COD和∠BOE相等嗎?
②∠BOD和∠COE有什么關(guān)系?
(2)如圖2,當(dāng)射線OC、射線OD在直線AB的同側(cè)時,請直接回答;
①∠COD和∠BOE相等嗎?
②第(1)題中的∠BOD和∠COE的關(guān)系還成立嗎?
【答案】(1)①∠COD=∠BOE,理由見解析;②∠BOD+∠COE=180°,理由見解析;(2)①∠COD=∠BOE,②成立
【解析】
(1)①根據(jù)等式的性質(zhì),在直角的基礎(chǔ)上都加∠BOD,因此相等,②將∠BOD+∠COE轉(zhuǎn)化為兩個直角的和,進而得出結(jié)論;
(2)①根據(jù)同角的余角相等,可得結(jié)論,②仍然可以將∠BOD+∠COE轉(zhuǎn)化為兩個直角的和,得出結(jié)論.
解:(1)①∠COD=∠BOE,理由如下:
∵∠BOC=∠DOE=90°,
∴∠BOC+∠BOD=∠DOE+∠BOD,
即∠COD=∠BOE,
②∠BOD+∠COE=180°,理由如下:
∵∠DOE=90°,∠AOE+∠DOE+∠BOD=∠AOB=180°,
∴∠BOD+∠AOE=180°﹣90°=90°,
∴∠BOD+∠COE=∠BOD+∠AOE+∠AOC=90°+90°=180°,
(2)①∠COD=∠BOE,
∵∠COD+∠BOD=∠BOC=90°=∠DOE=∠BOD+∠BOE,
∴∠COD=∠BOE,
②∠BOD+∠COE=180°,
∵∠DOE=90°=∠BOC,
∴∠COD+∠BOD=∠BOE+∠BOD=90°,
∴∠BOD+∠COE=∠BOD+∠COD+∠BOE+∠BOD=∠BOC+∠DOE=90°+90°=180°,
因此(1)中的∠BOD和∠COE的關(guān)系仍成立.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形中,是對角線,點在上,是等腰直角三角形,且,點是的中點,連結(jié)與.
(1)求證:.
(2)求證:.
(3)如圖2,若等腰直角三角形繞點按順時針旋轉(zhuǎn),其他條件不變,請判斷的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師在與同學(xué)進行“螞蟻怎樣爬最近”的課題研究時設(shè)計了以下三個問題,請你根據(jù)下列所給的重要條件分別求出螞蟻需要爬行的最短路程的長.
(1) 如圖1,正方體的棱長為5cm一只螞蟻欲從正方體底面上的點A沿著正方體表面爬到點C1處;
(2) 如圖2,有一圓柱形食品盒,它的高等于16cm,底面直徑為20cm.如果在盒外底面的邊緣A處有一只螞蟻,它想吃到盒外對面中點B處的食物;(盒的厚度和螞蟻的大小忽略不計,結(jié)果可含π)
(3) 如圖3, 有一無蓋的圓柱形食品盒,它的高等于16cm,底面直徑為20cm.如果在盒外底面的邊緣A處有一只螞蟻,它想吃到盒內(nèi)對面中點B處的食物.(盒的厚度和螞蟻的大小忽略不計,結(jié)果可含π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個等腰直角三角形OA2A3,以OA3為直角邊作第三個等腰直角三角形OA3A4,…,依此規(guī)律,得到等腰直角三角形OA2017A2018,則點A2017的坐標為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有四張標著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.
小明畫出樹狀圖如圖所示:
小華列出表格如下:
回答下列問題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機抽出一張卡片后 (填“放回”或“不放回”),再隨機抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為 ;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為誰獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝祖國70周年華誕,陽光超市銷售甲、乙兩種慶祝商品,該超市若同時購進甲、乙兩種商品各10件共花費400元;若購進甲種商品30件,購進乙種商品15件,將用去750元;
(1)求甲、乙兩種商品每件的進價;
(2)由于甲、乙兩種商品受到市民歡迎,十一月份超市決定購進甲、乙兩種商品共80件,且保持(1)的進價不變,已知甲種商品每件的售價為15元,乙種商品每件的售價40元,要使十一月份購進的甲、乙兩種商品共80件全部銷售完的總利潤不少于600元,那么該超市最多購進甲種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=90°∠A
(1)如圖1,求證:AB=AC;
(2)如圖2,若∠BAC=90°,點D為AB上一點,過點B作直線CD的垂線,垂足為E,連接AE, 求∠AEC的度數(shù);
(3)如圖3,在(2)的條件下,過點A作AE的垂線交CE于點F,連接BF,若∠ABF-∠EAB=15°,G為DF上一點,連接AG,若∠AGD=∠EBF,AG=6,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于D,DE⊥AB交AB的延長線于E,DF⊥AC,現(xiàn)有下列結(jié)論:①DE=DF; ②DE+DF=AD; ③DM平分∠ADF; ④AB+AC=2AE,其中正確的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com