如圖2,在⊙O中,已知∠AOB=1000,C是圓周上的一點(diǎn),則∠ACB為

A    1300        B   1000          C   800     D    500
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

三角形中,頂角等于36°的等腰三角形稱為黃金三角形,如圖1,在△ABC中,已知:AB=AC,且∠A=36°.
(1)在圖1中,用尺規(guī)作AB的垂直平分線交AC于D,并連接BD(保留作圖痕跡,不寫(xiě)作法);
(2)△BCD是不是黃金三角形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(3)設(shè)
BC
AC
=k
,試求k的值;
(4)如圖2,在△A1B1C1中,已知A1B1=A1C1,∠A1=108°,且A1B1=AB,請(qǐng)直接寫(xiě)出
BC
B1C1
的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的長(zhǎng).
小萍同學(xué)靈活運(yùn)用軸對(duì)稱知識(shí),將圖形進(jìn)行翻折變換如圖1.她分別以AB、AC為對(duì)稱軸,畫(huà)出△ABD、△ACD的軸對(duì)稱圖形,D點(diǎn)的對(duì)稱點(diǎn)為E、F,延長(zhǎng)EB、FC相交于G點(diǎn),得到四邊形AEGF是正方形.設(shè)AD=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.
(1)請(qǐng)你幫小萍求出x的值.
(2)參考小萍的思路,探究并解答新問(wèn)題:
如圖2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.請(qǐng)你按照小萍的方法畫(huà)圖,得到四邊形AEGF,求△BGC的周長(zhǎng).(畫(huà)圖所用字母與圖1中的字母對(duì)應(yīng))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•浦東新區(qū)一模)某條道路上通行車輛限速為60千米/時(shí),在離道路50米的點(diǎn)處建一個(gè)監(jiān)測(cè)點(diǎn)P,道路AB段為檢測(cè)區(qū)(如圖).在△ABP中,已知∠PAB=32°,∠PBA=45°,那么車輛通過(guò)AB段的時(shí)間在多少秒以內(nèi)時(shí),可認(rèn)定為超速(精確到0.1秒)?(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,cot32°≈1.60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們知道,含有36°的等腰三角形是特殊的三角形,通常把有一個(gè)內(nèi)角等于36°的三角形稱為“黃金三角形”.
(1)如圖1、2,在△ABC中,已知:AB=AC,且∠A=36°.請(qǐng)你設(shè)計(jì)兩種不同的分法,將黃金三角形ABC分割成三個(gè)等腰三角形(分別畫(huà)在圖1,圖2上)
(2)如圖3,在△ABC中,已知:AB=AC,且∠B=36°.請(qǐng)你設(shè)計(jì)一種分法,將黃金三角形ABC分割成三個(gè)等腰三角形.(畫(huà)在圖3上)
注:(畫(huà)圖工具不限,要求畫(huà)出分割線段;標(biāo)出能夠說(shuō)明不同分法所得三角形的內(nèi)角度數(shù),不要求寫(xiě)畫(huà)法,不要求證明.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們都知道,在等腰三角形中.有等邊對(duì)等角(或等角對(duì)等邊),那么在不等腰三角形中邊與角的大小關(guān)系又是怎樣的呢?讓我們來(lái)探究一下.
如圖1,在△ABC中,已知AB>AC,猜想∠B與∠C的大小關(guān)系,并證明你的結(jié)論;
證明:猜想∠C>∠B,對(duì)于這個(gè)猜想我們可以這樣來(lái)證明:
在AB上截取AD=AC,連接CD,
∵AB>AC,∴點(diǎn)D必在∠BCA的內(nèi)部
∴∠BCA>∠ACD
∵AD=AC,∴∠ACD=∠ADC
又∵∠ADC是△BCD的一個(gè)外角,∴∠ADC>∠B
∴∠BCA>∠ACD>∠B 即∠C>∠B
上面的探究過(guò)程是研究圖形中不等量關(guān)系證明的一種方法,將不等的線段轉(zhuǎn)化為相等的線段,由此解決問(wèn)題,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化的思想方法.請(qǐng)你仿照類比上述方法,解決下面問(wèn)題:
(1)如圖2,在△ABC中,已知AC>BC,猜想∠B與∠A的大小關(guān)系,并證明你的結(jié)論;
(2)如圖3,△ABC中,已知∠C>∠B,猜想AB與AC大小關(guān)系,并證明你的結(jié)論;
(3)根據(jù)前面得到的結(jié)果,請(qǐng)你總結(jié)出三角形中邊、角不等關(guān)系的一般性結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案