如圖,已知直線與⊙O相切于點(diǎn),⊙O的直徑是8cm,且,
(1)求證:
(2)求OA的長(zhǎng). 
(1)證明:連接OC,∵直線AB與⊙O相切于點(diǎn)
    ∴(切線的性質(zhì))
  又∵
    ∴(等腰三角形“三線合一”)
(2)解:∵⊙O的直徑是8cm
    ∴
  又∵
    ∴在中,根據(jù)勾股定理得:
    因此。的長(zhǎng)是。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線相交于點(diǎn)平分,,

問:圖中的線是否存在互相垂直的關(guān)系,若有,請(qǐng)寫出哪些線互相垂直,并說明理由;若無,直接說明理由

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線軸、軸分別交于點(diǎn),與雙曲線分別交于點(diǎn),且點(diǎn)的坐標(biāo)為.

(1)分別求出直線及雙曲線的解析式;

(2)求出點(diǎn)的坐標(biāo);

(3)利用圖象直接寫出:當(dāng)在什么范圍內(nèi)取值時(shí),>.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆廣東省珠海市香洲區(qū)中考二模數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知直線與直線相交于點(diǎn)分別交兩點(diǎn).矩形的頂點(diǎn)分別在直線上,頂點(diǎn)都在軸上,且點(diǎn)與點(diǎn)重合.

(1)求的面積;
(2)求矩形的邊的長(zhǎng);
(3)若矩形從原點(diǎn)出發(fā),沿軸的反方向以每秒1個(gè)單位長(zhǎng)度的速度平移,設(shè)移動(dòng)時(shí)間為t(0≤t<3)秒,矩形重疊部分的面積為,求關(guān)于的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(貴州遵義卷)數(shù)學(xué)(解析版) 題型:填空題

如圖,已知直線與雙曲線(k>0)交于A、B兩點(diǎn),點(diǎn)B的坐標(biāo)為,C為雙曲線(k>0)上一點(diǎn),且在第一象限內(nèi),若△AOC的面積為6,則點(diǎn)C的坐標(biāo)為    

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(湖北咸寧卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△COD.

(1)點(diǎn)C的坐標(biāo)是      ,線段AD的長(zhǎng)等于      

(2)點(diǎn)M在CD上,且CM=OM,拋物線y=x2+bx+c經(jīng)過點(diǎn)G,M,求拋物線的解析式;

(3)如果點(diǎn)E在y軸上,且位于點(diǎn)C的下方,點(diǎn)F在直線AC上,那么在(2)中的拋物線上是否存在點(diǎn)P,使得以C,E,F(xiàn),P為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)求出該菱形的周長(zhǎng)l;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案