如圖,在平面直角坐標(biāo)系中,點(diǎn)0為坐標(biāo)原點(diǎn),直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,BD平分∠AB0,點(diǎn)C是x軸的正半軸上一點(diǎn),連接BC,且AC=AB.
(1)求直線BD的解析式:
(2)過C作CH∥y軸交直線AB于點(diǎn)H,點(diǎn)P是射線CH上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PE⊥CH,直線PE交直線BD于E、交直線BC于F,設(shè)線段EF的長為d(d≠0),點(diǎn)P的縱坐標(biāo)為t,求d與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,取線段AB的中點(diǎn)M,y軸上有一點(diǎn)N.試問:是否存在這樣的t的值,使四邊形PEMN是平行四邊形,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
(1);(2)當(dāng)0≤<6時(shí),,當(dāng)>6時(shí),;(3)2
【解析】
試題分析:(1)先求出直線與坐標(biāo)軸的交點(diǎn)坐標(biāo),即可求得AO、BO的長,在Rt△AOB中,根據(jù)勾股定理可以求得AB的長,過點(diǎn)D作DG⊥AB于點(diǎn)G,根據(jù)角平分線的性質(zhì)可求得OD=DG,設(shè)OD=DG=,由根據(jù)三角形的面積公式即可列方程求得a的值,從而可以求得點(diǎn)D的坐標(biāo),設(shè)直線BD的解析式為,將B(0,6),D(-3,0)代入即可求得結(jié)果;
(2)由AC=AB=10,OA=8可求得OC的長,即可得到點(diǎn)C的坐標(biāo),設(shè)直線BC的解析式為,將B(0,6),C(2,0)代入即可求得直線BC的解析式,由CH//軸,點(diǎn)P的縱坐標(biāo)為,所以當(dāng)時(shí),有或,即可表示出點(diǎn)E、F的坐標(biāo),再分當(dāng)0≤<6時(shí),當(dāng)>6時(shí)兩種情況分析;
(3)由點(diǎn)M為線段AB的中點(diǎn)易求得點(diǎn)M的坐標(biāo),即可求得MN的長,根據(jù)平行四邊形的性質(zhì)可得MN//PE,MN=PE=4,由(2)得:E(,),P(2,),再根據(jù)PE==4,即可求得結(jié)果.
解:(1)當(dāng)時(shí),,,當(dāng)時(shí),
∴A(-8,0),B(0,6)
∴AO=8,OB=6
在Rt△AOB中,,所以AB=10
過點(diǎn)D作DG⊥AB于點(diǎn)G
∵BD平分∠ABO,OB⊥OA
∴OD=DG
設(shè)OD=DG=
∵
∴
即,解得
∴D(-3,0)
設(shè)直線BD的解析式為
將B(0,6),D(-3,0)代入得:
解得:
∴直線BD的解析式為
(2)∵AC=AB=10,OA="8"
∴OC=10-8=2
∴C(2,0)
設(shè)直線BC的解析式為
將B(0,6),C(2,0)代入
解得:
∴直線BC的解析式為
∵CH//軸,點(diǎn)P的縱坐標(biāo)為
∴當(dāng)時(shí),有或
∴或
∴E(,),F(xiàn)(,)
①當(dāng)0≤<6時(shí),EF=,解得
②當(dāng)>6時(shí),EF=,解得;
(3)由點(diǎn)M為線段AB的中點(diǎn)
易求:M(-4,3)
∴MN=4
∵四邊形PEMN是平行四邊形
∴MN//PE,MN=PE=4
由(2)得:E(,),P(2,)
∴PE==4,解得="2"
∴存在這樣的=2,使得四邊形PEMN是平行四邊形.
考點(diǎn):動(dòng)點(diǎn)問題的綜合題
點(diǎn)評(píng):此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
|
|
|
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com