(2008•畢節(jié)地區(qū))數(shù)學課上,同學們探究下列命題的準確性:
(1)頂角為36°的等腰三角形具有一種特性,即經過它的某一頂點的一條射線可把它分成兩個小等腰三角形.為此,請你解答:如圖,已知在△ABC中,AB=AC,∠A=36°,射線BD平分∠ABC交AC于點D.
求證:△DAB與△BCD都是等腰三角形;
(2)在證明了該命題后,有同學發(fā)現(xiàn):下面兩個等腰三角形也具有這種特性.請你在下列兩個三角形中分別畫出一條射線,把它們分別分成兩個小等腰三角形,并在圖中標出所畫小等腰三角形兩個底角的度數(shù);
(3)接著,同學們又發(fā)現(xiàn):還有一些既不是等腰三角形也不是直角三角形的三角形也具有這種特性,請你畫出兩個具有這種特性的三角形示意圖(要求兩三角形不相似,而且既不是等腰三角形也不是直角三角形,并標出每一個小等腰三角形各內角的度數(shù)).

【答案】分析:(1)可以先計算出∠ABC和∠C的度數(shù)為(180°-36°)÷2=72°,再求出∠DBA和∠DBC的度數(shù)72°÷2=36°;
(2)圖1根據頂角的度數(shù)180°-2×45°=90°,分解成兩個角都是45°,圖2中一個與底角36°相等、另一個180°-36°×3=72°再作為底角;
(3)先作一個等腰三角形,然后在這個三角形的基礎上作出另一個等腰三角形.
解答:(1)證明:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵射線BD平分∠ABC,
∴∠ABD=∠CBD=36°.
∴∠BDC=72°,
∴AD=BD=BC.
∴△DAB與△BCD都是等腰三角形.(4分)

(2)解:圖1中將頂角90°平分,圖2中將頂角108°分解成36°和72°兩個角;

(3)解:如圖(符合即可)(5分)

點評:答對本題,需要對等腰三角形的性質和判定比較熟悉.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年貴州省畢節(jié)地區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年貴州省畢節(jié)地區(qū)中考數(shù)學試卷(解析版) 題型:選擇題

(2008•畢節(jié)地區(qū))把函數(shù)y=x2的圖象向右平移兩個單位,再向下平移一個單位得到的函數(shù)關系式是( )
A.y=(x+2)2-1
B.y=(x-2)2-1
C.y=(x+2)2+1
D.y=(x-2)2+1

查看答案和解析>>

科目:初中數(shù)學 來源:2005年甘肅省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2008•畢節(jié)地區(qū))如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經過A、B、C三點的拋物線的解析式;
(2)設弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結論;
(3)設點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

同步練習冊答案