【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于點(diǎn),過點(diǎn)作軸的垂線,垂足為,已知的面積為.
求反比例函數(shù)的解析式;
如圖,點(diǎn)為反比例函數(shù)在第三象限圖象上的點(diǎn),過點(diǎn)作軸的垂線,垂足為,求證:.
【答案】;證明見解析.
【解析】
(1)根據(jù)反比例函數(shù)的比例系數(shù)的幾何意義可以求得反比例函數(shù)的解析式;
(2)兩函數(shù)的解析式聯(lián)立組成方程組即可求得點(diǎn)A的坐標(biāo),進(jìn)而得到ON=OM=2,NB=AM=1,∠B N O=∠AMO=90°,然后可以得到△OAM≌△OBN.
(1)設(shè)A點(diǎn)的坐標(biāo)為(a,b),則.∴ab=k.
∵,∴,∴k=2,∴反比例函數(shù)的解析式為.
(2)由得:
∴A為(2,1).
由反比例函數(shù)的中心對稱性可得B(﹣2,﹣1),得到ON=OM=2,NB=AM=1,∠BNO=∠AMO=90°,∴△OAM≌△OBN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①兩條對角線相等的四邊形是矩形;②有一組對邊相等,一組對角是直角的四邊形是矩形;③有一個角為直角,兩條對角線相等的四邊形是矩形;④四個角都相等的四邊形是矩形⑤相鄰兩邊都互相垂直的四邊形是矩形.其中判斷正確的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點(diǎn),以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,點(diǎn)A、點(diǎn)B分別是y軸、x軸上的兩個動點(diǎn),點(diǎn)C在第三象限,直角邊AC交x軸于點(diǎn)D,斜邊BC交y軸于點(diǎn)E.
(1)若A(0,1),B(2,0),畫出圖形并求C點(diǎn)的坐標(biāo);
(2)若點(diǎn)D恰為AC中點(diǎn)時,連接DE,畫出圖形,判斷∠ADB和∠CDE大小關(guān)系,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸交于點(diǎn),與軸交于點(diǎn),且經(jīng)過點(diǎn).
(1)當(dāng)時;
①求一次函數(shù)的表達(dá)式;
②平分交軸于點(diǎn),求點(diǎn)的坐標(biāo);
(2)若△為等腰三角形,求的值;
(3)若直線也經(jīng)過點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點(diǎn)分別在AB,AC上.
(1)加工成的正方形零件的邊長是多少mm?
(2)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少?請你計算.
(3)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②-1≤a≤-;③對于任意實數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB// CD,Rt△EFG的頂點(diǎn)F,G分別落在直線AB,CD上,GE交AB于點(diǎn)H,∠EFG=90°,∠E=32°.
(1)∠FGE= °
(2)若GE平分∠FGD,求∠EFB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com