(2012•遂寧)已知:如圖,直線y=mx+n與拋物線y=
1
3
x2+bx+c
交于點(diǎn)A(1,0)和點(diǎn)B,與拋物線的對(duì)稱軸x=-2交于點(diǎn)C(-2,4),直線f過(guò)拋物線與x軸的另一個(gè)交點(diǎn)D且與x軸垂直.
(1)求直線y=mx+n和拋物線y=
1
3
x2+bx+c
的解析式;
(2)在直線f上是否存在點(diǎn)P,使⊙P與直線y=mx+n和直線x=-2都相切.若存在,求出圓心P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)在線段AB上有一個(gè)動(dòng)點(diǎn)M(不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,當(dāng)MN的長(zhǎng)為多少時(shí),△ABN的面積最大,請(qǐng)求出這個(gè)最大面積.
分析:(1)利用待定系數(shù)法可以求出直線y=mx+n的解析式;在解二次函數(shù)的解析式時(shí),可由其對(duì)稱軸方程求出b的值,再代入A點(diǎn)的坐標(biāo)可以求出c的值.
(2)此題需要從圖形入手,顯然在直線AB的上下方各有一個(gè)符合條件的P點(diǎn),那么可以將圖形進(jìn)行簡(jiǎn)化(如解答部分的圖示),在簡(jiǎn)化的圖形中,△P1E1F≌△PEF且△PEF∽△ADF;圓的半徑可由直線f和直線x=-2的距離得出(即PE、P1E1的長(zhǎng)),AD、FD的長(zhǎng)不難得到,那么由相似三角形即可求出PF的長(zhǎng),進(jìn)而能求出PD、P1D的長(zhǎng),由此求出圓心的坐標(biāo).
(3)點(diǎn)B的坐標(biāo)不難求出,根據(jù)直線AB和拋物線的解析式,可以先用一個(gè)未知數(shù)表達(dá)出點(diǎn)M、N的坐標(biāo),以MN為底,A、B點(diǎn)的橫坐標(biāo)差的絕對(duì)值為高(也可將△ABN分成兩個(gè)三角形來(lái)分析),即可得到關(guān)于△ABN的面積和未知數(shù)的函數(shù)解析式,根據(jù)函數(shù)的性質(zhì)求解即可.
解答:解:(1)將A(1,0)、C(-2,4)代入直線y=mx+n得:
m+n=0
-2m+n=4
,
解得:
m=-
4
3
n=
4
3

故直線解析式為:y=-
4
3
x+
4
3

將A(1,0)代入拋物線y=
1
3
x2+bx+c
及對(duì)稱軸為直線x=-2得:
-
b
1
3
=-2
1
3
+b+c=0
,
解得:
b=
4
3
c=-
5
3
,
故拋物線解析式為:y=
1
3
x2+
4
3
x-
5
3


(2)存在.
如圖1,圖形簡(jiǎn)化為圖2

直線f解析式:x=-5,故圓半徑R=3,且F(-5,8).
易得△PEF∽△ADF,△P1E1F≌△PEF,其中PE=P1E1=R=3,AD=6,F(xiàn)D=8,P1F=PF.
在Rt△ADF中,由勾股定理得:AF=10,由
AD
PE
=
AF
PF
得:PF=5.
∴PD=13,P1D=3.
P(-5,13)、P1(-5,3).
綜上可得存在點(diǎn)P的坐標(biāo)為(-5,13)或(-5,3).

(3)如圖3:
聯(lián)立直線與拋物線解析式得:
y=
1
3
x2+
4
3
x-
5
3
y=-
4
3
x+
4
3
,
解得交點(diǎn)B的坐標(biāo):(-9,
40
3
).
設(shè)點(diǎn)M(q,-
4
3
q+
4
3
),N(q,
1
3
q2+
4
3
q-
5
3
),
所以:MN=(-
4
3
q+
4
3
)-(
1
3
q2+
4
3
q-
5
3
)=-
1
3
q2-
8
3
q+3=-
1
3
(q+4)2+
25
3

S△ABN=S△AMN+S△BMN=
1
2
MN•AF+
1
2
MN•BE=
1
2
MN(AF+BE)=5MN=-
5
3
(q+4)2+
125
3

當(dāng)q=-4時(shí),S△ABN有最大值
125
3
;此時(shí):MN=
25
3
點(diǎn)評(píng):此題考查了函數(shù)解析式的確定、直線和圓的位置關(guān)系、相似三角形以及全等三角形的應(yīng)用、三角形面積的求法等重要知識(shí)點(diǎn);(2)題中,對(duì)圖形進(jìn)行簡(jiǎn)化能使得繁雜的題目更加直觀;最后一題是二次函數(shù)綜合題中考查頻率比較大的一種類型題,需要牢固掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遂寧)已知:如圖,△ABC中,AB=AC,AD⊥BC垂足為D.將△ADC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落在BD上點(diǎn)A1處,點(diǎn)C落在DA延長(zhǎng)線上點(diǎn)C1處,A1C1與AB交于點(diǎn)E.
求證:△A1BE≌△AC1E.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遂寧)經(jīng)過(guò)建設(shè)者三年多艱苦努力地施工,貫通我市的又一條高速公路“遂內(nèi)高速公路”于2012年5月9日全線通車(chē).已知原來(lái)從遂寧到內(nèi)江公路長(zhǎng)150km,高速公路路程縮短了30km,如果一輛小車(chē)從遂寧到內(nèi)江走高速公路的平均速度可以提高到原來(lái)的1.5倍,需要的時(shí)間可以比原來(lái)少用1小時(shí)10分鐘.求小汽車(chē)原來(lái)和現(xiàn)在走高速公路的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•遂寧)已知:如圖,AB是⊙O的直徑,D是弧AC的中點(diǎn),弦AC與BD相交于點(diǎn)E,AD=2
3
,DE=2.
(1)求直徑AB的長(zhǎng);
(2)在圖2中,連接DO,DC,BC.求證:四邊形BCDO是菱形;
(3)求圖2中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)模擬卷(9)(解析版) 題型:選擇題

(2012•遂寧)如圖,已知等腰梯形ABCD中,AD∥BC,∠B=60°,AD=2,BC=8,則此等腰梯形的周長(zhǎng)為( )

A.19
B.20
C.21
D.22

查看答案和解析>>

同步練習(xí)冊(cè)答案