【題目】如圖,一條公路的轉(zhuǎn)彎處是一段圓。).
(1)用直尺和圓規(guī)作出所在圓的圓心O;(要求保留作圖痕跡,不寫作法)
(2)若的中點C到弦AB的距離為20m,AB=80m,求所在圓的半徑.
【答案】(1)作圖見試題解析;(2)50m.
【解析】
試題分析:(1)連結(jié)AC、BC,分別作AC和BC的垂直平分線,兩垂直平分線的交點為點O,如圖1;
(2)連接OA,OC,OC交AB于D,如圖2,由C為的中點,得到OC⊥AB,AD=BD=AB=40,則CD=20,設(shè)⊙O的半徑為r,在Rt△OAD中利用勾股定理得到r的值.
試題解析:(1)如圖1,點O為所求;
(2)連接OA,OC,OC交AB于D,如圖2,∵C為的中點,∴OC⊥AB,∴AD=BD=AB=40,設(shè)⊙O的半徑為r,則OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵,∴,解得r=50,即所在圓的半徑是50m.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與坐標軸交于A、B、C三點,其中B(4,0)、C(﹣2,0),連接AB、AC,在第一象限內(nèi)的拋物線上有一動點D,過D作DE⊥x軸,垂足為E,交AB于點F.
(1)求此拋物線的解析式;
(2)在DE上作點G,使G點與D點關(guān)于F點對稱,以G為圓心,GD為半徑作圓,當⊙G與其中一條坐標軸相切時,求G點的橫坐標;
(3)過D點作直線DH∥AC交AB于H,當△DHF的面積最大時,在拋物線和直線AB上分別取M、N兩點,并使D、H、M、N四點組成平行四邊形,請你直接寫出符合要求的M、N兩點的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件是必然事件的為( )
A.購買一張彩票,中獎
B.通常加熱到100℃時,水沸騰
C.任意畫一個三角形,其內(nèi)角和是360°
D.射擊運動員射擊一次,命中靶心
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,真命題是( )
A. 兩條對角線互相平分的四邊形是平行四邊形
B. 兩條對角線互相垂直的四邊形是菱形
C. 兩條對角線互相垂直且相等的四邊形是正方形
D. 兩條對角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=a,AD=b,點M為BC邊上一動點(點M與點B、C不重合),連接AM,過點M作MN⊥AM,垂足為M,MN交CD或CD的延長線于點N.
(1)求證:△CMN∽△BAM;
(2)設(shè)BM=x,CN=y,求y關(guān)于x的函數(shù)解析式.當x取何值時,y有最大值,并求出y的最大值;
(3)當點M在BC上運動時,求使得下列兩個條件都成立的b的取值范圍:①點N始終在線段CD上,②點M在某一位置時,點N恰好與點D重合.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=8,點E,F(xiàn)分別在AB,AD上,且AE=AF,過點E作EG∥AD交CD于點G,過點F作FH∥AB交BC于點H,EG與FH交于點O.當四邊形AEOF與四邊形CGOH的周長之差為12時,AE的值為( )
A.6.5
B.6
C.5.5
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著城際鐵路的正式開通,從甲市經(jīng)丙市到乙市的高鐵里程比普快里程縮短了90km,運行時間減少了8h,已知甲市到乙市的普快列車里程為1220km.高鐵平均時速是普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王先生要從甲市去距離大約780km的丙市參加14:00召開的會議,如果他買到當日9:20從甲市到丙市的高鐵票,而且從丙市火車站到會議地點最多需要1小時.試問在高鐵列車準點到達的情況下,它能否在開會之前20分鐘趕到會議地點?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com