【題目】如圖,四邊形中,,

1)求證:;

2)若,,,分別是,,,的中點(diǎn),求證:線段與線段互相平分.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

1)過(guò)點(diǎn)DDMACBC的延長(zhǎng)線于點(diǎn)M,由平行四邊形的性質(zhì)易得AC=DM=DB,∠DBC=M=ACB,由全等三角形判定定理及性質(zhì)得出結(jié)論;
2)連接EHFH,FGEG,E,FG,H分別是ADBC,DB,AC的中點(diǎn),易得四邊形HFGE為平行四邊形,由平行四邊形的性質(zhì)及(1)結(jié)論得HFGE為菱形,易得EFGH互相垂直平分.

解:(1)證明:(1)過(guò)點(diǎn)DDMACBC的延長(zhǎng)線于點(diǎn)M,如圖1,
ADCB,
∴四邊形ADMC為平行四邊形,
AC=DM=DB,∠DBC=M=ACB,
在△ACB和△DBC中,

,

∴△ACB≌△DBCSAS),
AB=DC;

2)連接EH,FHFG,EG,如圖2,
E,FG,H分別是ADBC,DBAC的中點(diǎn),
GEAB,且GE=AB,HFAB,且HF=AB,

GEHFGE=HF

∴四邊形HFGE為平行四邊形,
由(1)知,AB=DC,
GE=HE
HFGE為菱形,
EFGH互相垂直平分.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長(zhǎng)CB1交直線l于點(diǎn)A1 , 作正方形A1B1C1B2 , 延長(zhǎng)C1B2交直線l于點(diǎn)A2 , 作正方形A2B2C2B3 , 延長(zhǎng)C2B3交直線l于點(diǎn)A3 , 作正方形A3B3C3B4 , …,依此規(guī)律,則A2016A2017=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCDCEFG,如圖放置,點(diǎn)B,C,E共線,點(diǎn)C,D,G共線,連接AF,取AF的中點(diǎn)H,連接GH.若BC=EF=2,CD=CE=1,則GH=( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人到一家快遞公司辦理環(huán)江香米(簡(jiǎn)稱香米)的快遞托運(yùn),重量為千克.快遞公司收取托運(yùn)費(fèi)方案如下:

凡物品重量不超過(guò)10千克的,按2/千克收取托運(yùn)費(fèi);當(dāng)物品重量超過(guò)10千克的,超出部分按3/千克加收托運(yùn)費(fèi).

1)寫出千克香米的托運(yùn)費(fèi)的表達(dá)式 (用含字母的式子表示);

2)若托運(yùn)香米重量為千克時(shí),求出這筆托運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察圖中給出的信息,回答下列問(wèn)題:

1)一本筆記本與一支中性筆分別是多少元?

2)某學(xué)校給參加體育比賽獲一等獎(jiǎng)的10名學(xué)生發(fā)筆記本,給獲二等獎(jiǎng)的20名學(xué)生發(fā)中性筆,現(xiàn)有兩個(gè)超市在搞促銷活動(dòng),A超市規(guī)定:這兩種商品都打八折;B超市規(guī)定:每買一個(gè)筆記本送一支中性筆,另外購(gòu)買的中性筆按原價(jià)賣.該學(xué)校選擇哪家超市購(gòu)買更合算,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教育部明確要求中小學(xué)生每天要有2小時(shí)體育鍛煉,周末朱諾和哥哥在米的環(huán)形跑道上騎車鍛煉,他們?cè)谕坏攸c(diǎn)沿著同一方向同時(shí)出發(fā),騎行結(jié)束后兩人有如下對(duì)話:

朱諾:你要分鐘才能第一次追上我.

哥哥:我騎完一圈的時(shí)候,你才騎了半圈!

1)請(qǐng)根據(jù)他們的對(duì)話內(nèi)容,求出朱諾和哥哥的騎行速度(速度單位:米/秒);

2)哥哥第一次追上朱諾后,在第二次相遇前,再經(jīng)過(guò)多少秒,朱諾和哥哥相距?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面的證明:

如圖,BE平分∠ABD,DE平分∠BDC,且∠α+β=90°,求證:ABCD

證明:∵BE平分∠ABD(已知),∴∠ABD=2α(  )

DE平分∠BDC(  )

∴∠BDC=  (  ),∴∠ABD+BDC=2α+2β=2(α+β)(等量代換)

∵∠α+β=90°(已知),∴∠ABD+BDC=(  ),∴ABCD(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,頂點(diǎn)C的坐標(biāo)為(﹣3,3 ),反比例函數(shù)y= 的圖象與菱形對(duì)角線AO交于D點(diǎn),連接BD,當(dāng)BD⊥x軸時(shí),k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x2+3mx)(x23x+n)的積中不含xx3項(xiàng),

1)求m2mn+n2的值;

2)求代數(shù)式(﹣18m2n2+9mn2+3m2014n2016的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案