如圖,已知直線AB與CD相交于O,EO⊥CD,垂足為O,則圖中∠AOE和∠DOB的關(guān)系是


  1. A.
    同位角
  2. B.
    對(duì)頂角
  3. C.
    互為補(bǔ)角
  4. D.
    互為余角
D
分析:由于∠AOC和∠DOB是對(duì)頂角,而EO⊥CD,垂足為O,由此可以得到∠AOE和∠AOC是互余的角,進(jìn)一步就可以得到∠AOE和∠DOB的關(guān)系.
解答:∵直線AB與CD相交于O,
∴∠AOC和∠DOB是對(duì)頂角,
即∠AOC=∠DOB,
∵EO⊥CD,垂足為O,
∴∠AOE和∠AOC互余,
∴∠AOE和∠DOB的關(guān)系是互余的關(guān)系.
故選D.
點(diǎn)評(píng):本題考查了垂直的定義和對(duì)頂角的性質(zhì),要注意領(lǐng)會(huì)由垂直得直角這一要點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB與x軸、y軸分別交于A和B,OA=4,且OA、OB長(zhǎng)是關(guān)于x的精英家教網(wǎng)方程x2-mx+12=0的兩實(shí)根,以O(shè)B為直徑的⊙M與AB交于C,連接CM.
(1)求⊙M的半徑.
(2)若D為OA的中點(diǎn),求證:CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB與x軸、y軸分別交于A和B,OA=4,且OA、OB長(zhǎng)是關(guān)于x的方程x2-mx+12=0的兩實(shí)根,以O(shè)B為直徑的⊙M與AB交于C,連接CM并延長(zhǎng)交x軸于N.
(1)求⊙M的半徑.
(2)求線段AC的長(zhǎng).
(3)若D為OA的中點(diǎn),求證:CD是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,已知直線AB與CD相交于點(diǎn)O,OB平分∠EOD,∠1+∠2=90°,
問:圖中的線是否存在互相垂直的關(guān)系,若有,請(qǐng)寫出哪些線互相垂直,并說明理由;若無,直接說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,已知直線AB與x軸、y軸交于A、B兩點(diǎn)與反比例函數(shù)的圖象交于C點(diǎn)和D點(diǎn),若OA=3,點(diǎn)C的橫坐標(biāo)為-3,tan∠BAO=
23

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求△COD的面積;
(3)若一次函數(shù)的值大于反比例函數(shù)的值,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線AB與CD相交于點(diǎn)O,OE⊥CD,OF平分∠BOE,若∠AOC=∠EOF,
(1)求∠AOC的度數(shù);
(2)寫出∠EOF的余角和補(bǔ)角.

查看答案和解析>>

同步練習(xí)冊(cè)答案