【題目】在△ABC中,∠BAC=45°,CD⊥AB于點D,AE⊥BC于點E,連接DE.
(1)如圖1,當△ABC為銳角三角形時,
①依題意補全圖形,猜想∠BAE與∠BCD之間的數(shù)量關系并證明;
②用等式表示線段AE,CE,DE的數(shù)量關系,并證明;
(2)如圖2,當∠ABC為鈍角時,依題意補全圖形并直接寫出線段AE,CE,DE的數(shù)量關系.
【答案】(1)①補全圖形,如圖1所示.見解析;猜想:∠BAE=∠BCD. 理由見解析;②見解析;(2)補全圖形,如圖3所示. 見解析;線段AE,CE,DE的數(shù)量關系:CE-DE=AE.
【解析】
(1)①依題意補全圖形,由直角三角形的性質得出∠BAE﹢∠B=90°,
∠BCD﹢∠B=90°即可得出∠BAE=∠BCD;
②在AE上截取AF=CE,可證出△ACD是等腰直角三角形,得出AD=CD,可證明△ADF≌△CDE,得出DF=DE, ∠ADF=∠CDE,可推出∠CDE﹢∠FDC=∠EDF=90°.證出△EDF是等腰直角三角形,得出EF=,即可得出結論;
(2) 在CE上截取CF=AE,連接DF由CD⊥AD,AE⊥BC,可得∠EAD=∠DCF
由∠BAC=45°可得AD=CD,可證△ADE≌△CDF,可得ED=DF∠ADE=∠CDF,可推出∠EDF=90°可得△EDF是等腰直角三角形故 ,即可得線段AE,CE,DE的數(shù)量關系.
(1)①依題意,補全圖形,如圖1所示.
猜想:∠BAE=∠BCD.
理由如下:
∵CD⊥AB,AE⊥BC,
∴∠BAE﹢∠B=90°,
∠BCD﹢∠B=90°.
∴∠BAE=∠BCD.
②證明:如圖2,在AE上截取AF=CE.
連接DF.
∵∠BAC=45°,CD⊥AB,
∴△ACD是等腰直角三角形.
∴AD=CD.
又∠BAE=∠BCD,
∴△ADF≌△CDE(SAS).
∴DF=DE, ∠ADF=∠CDE.
∵AB⊥CD,
∴∠ADF﹢∠FDC=90°.
∴∠CDE﹢∠FDC=∠EDF=90°.
∴△EDF是等腰直角三角形.
∴EF=.
∵AF+EF=AE,
∴CE+DE=AE.
(2)依題意補全圖形,如圖3所示.
在CE上截取CF=AE,連接DF
∵CD⊥AD,AE⊥BC
∴∠ADC=∠AEC=90°
∴∠EAB+∠ABE=90°,∠DBC+∠DCF=90°,∠ABE=∠CBD
∴∠EAD=∠DCF
∵∠BAC=45°
∴∠DCA=45°
∴AD=CD
又∵CF=AE
∴△ADE≌△CDF
∴ED=DF
∠ADE=∠CDF
∵∠CDF+∠ADF=90°
∴∠ADE+∠ADF=90°
∴∠EDF=90°
∴△EDF是等腰直角三角形
∴
∵CE=CF+EF
∴
∴線段AE,CE,DE的數(shù)量關系:CE-DE=AE.
故答案為:CE-DE=AE
科目:初中數(shù)學 來源: 題型:
【題目】為了在校運會中取得更好的成績,小丁積極訓練.在某次試投中鉛球所經過的路線是如圖所示的拋物線的一部分.已知鉛球出手處A距離地面的高度是米,當鉛球運行的水平距離為3米時,達到最大高度的B處.小丁此次投擲的成績是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2﹣2x+3
(1)求出頂點,并畫出二次函數(shù)的圖象.
(2)根據圖象解決下列問題
①若y>0,寫出x的取值范圍.
②求出﹣≤x≤2時,y的最大值和最小值.
③求出﹣5<y<3時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某公司要建一個矩形的產品展示臺,展示臺的一邊靠找為9m的宣傳版(這條邊不能超出宣傳版),另三邊用總長為40m的紅布粘貼在展示臺邊上.設垂直于宣傳版的一邊長為
(1)當展示臺的面積為128m2時,求的值;
(2)設展示臺的面積為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數(shù)的圖象和都在第一象限內,,軸,且,點的坐標為.
(1)若反比例函數(shù)的圖象經過點B,求此反比例函數(shù)的解析式;
(2)若將向下平移(m>0)個單位長度,,兩點的對應點同時落在反比例函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+(m﹣1)x+m的對稱軸為x=,請你解答下列問題:
(1)m= ,拋物線與x軸的交點為 .
(2)x取什么值時,y的值隨x的增大而減。
(3)x取什么值時,y<0?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點E,交于點D,連接CD、OD,以下三個結論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項,其中所有正確結論的序號是( )
A.①②B.②③
C.①③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形的兩個頂點,在反比例函數(shù)的圖象上,對角線與的交點恰好是坐標原點,已知點,.
(1)求反比例函數(shù)的解析式;
(2)點是軸上一點,若是等腰三角形,直接寫出點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,△ABC的三個頂點坐標分別為A(1,1),B(4,0),C(4,4).
(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉90°,得到△A2B2C2.
(2)求點C1在旋轉過程中所經過的路徑長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com