如圖1,在△ABC中,∠ACB=90°,DE⊥AC,DF⊥BC,AD=3,DB=4,將圖1中△ADE繞點D順時針旋轉(zhuǎn)90°可以得到圖2,則圖1中△ADE和△BDF面積之和為   
【答案】分析:由題意易證得四邊形DECF是正方形,則可證得△AED∽△DFB,設(shè)DE=CE=CF=DF=x,由相似三角形的對應(yīng)邊成比例,可得BF=x,然后由勾股定理求得x的值,即可求得△BDF的面積,再由相似三角形的面積比等于相似比的平方,△ADE的面積,繼而求得答案.
解答:解:如圖1,∵在△ABC中,∠ACB=90°,DE⊥AC,DF⊥BC,
∴四邊形DECF是矩形,
由旋轉(zhuǎn)的性質(zhì)可得:DE=DF,
∴四邊形DECF是正方形,
∴AC∥DF,DE∥BC,
∴∠A=∠FDB,∠EDA=∠B,
∴△AED∽△DFB,
,
設(shè)DE=CE=CF=DF=x,
,
∴BF=x,
在Rt△BDF中,BD2=DF2+BF2,
∴42=x2+(x)2
解得:x=,
∴DF=,BF=,
∴S△BDF=DF•BF=××=,
∵S△BDF:S△DAE=(2=,
∴S△ADE=,
∴S△ADE+S△BDF=+=6.
故答案為:6.
點評:此題考查了相似三角形的判定與性質(zhì)、正方形的判定與性質(zhì)以及勾股定理.此題難度適中,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時,求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案