證明:(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).
分析:本題需先根據(jù)三數(shù)完全平方公式進行展開各式,然后消去同類項,再進行移項,最后證出等于零即可求出結果
解答:證明:∵(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3
∴xyz[(x+y+z)3-(x3+y3+z3)]=(yz+zx+xy)3)-(y3z3+z3x3+x3y3
∴xyz[(x3+y3+z3+3x2y+3xy2+3xz2
+3y2z
+3yz2+6xyz)-(x3+y3+z3)],
=(y3z3+z3x3+x3y3+3y2z3x+3z3x2y+3y2zx2+3z2x3y+3zx3y2+6y2z2x2)-(y3z3+z3x3+x3y3),
∴xyz(3x2y+3xy2+3xz2
+3y2z
+3yz2+6xyz)=3y2z3x+3z3x2y+3y2zx2+3z2x3y+3zx3y2+6y2z2x2
∴(3x3y2z+3x2y3z+3x2z3y+3y3z2x+3y2z3x+6x2y2z2=3y2z3x+3z3x2y+3y2zx2+3z2x3y+3zx3y2+6y2z2x2
∴(3x3y2z+3x2y3z+3x2z3y+3y3z2x+3y2z3x+6x2y2z2-3y2z3x-3z3x2y-3y2zx2-3z2x3y--6y2z2x2=0
∴(x+y+z)3xyz-(yz+zx+xy)3=xyz(x3+y3+z3)-(y3z3+z3x3+x3y3).
點評:本題主要考查了整式的等式證明,在解題時要注意三數(shù)完全立方公式的應用,這是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,已知:點B,F(xiàn),C,D在同一直線上,且FB=CD,AB∥ED,AC∥FE,請你根據(jù)上述條件,判斷∠A與∠E的大小關系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E為多少?
下面是小明同學的解法,請幫助他完成證明.
證明:因為∠1=∠ECD=
1
2
∠ACD (原因:
 

又因為∠2=(∠BAE  )=
1
2
∠CAB(原因:
 

又因為AB∥CD,
所以∠CAB+∠ACD=180°(原因:
 

所以∠1+∠2=
1
2
(∠CAB+∠ACD)=90°(等量代換)
又因為∠1+∠2+∠E=180°(原因:
 

所以∠E=90°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對于正數(shù)x,規(guī)定f(x)=
x2
1+x2
,
(1)計算f(2)=
 
;f(
1
2
)=
 
;f(2)+f(
1
2
)=
 
;f(3)+f(
1
3
)=
 
;…
(2)猜想f(x)+f(
1
x
)
=
 
,請予以證明.
(3)現(xiàn)在你會計算f(
1
2010
)
+f(
1
2009
)+f(
1
2008
)+f(
1
2007
)+f(
1
2006
)+…f(
1
3
)+f(
1
2
)+f(1)+f(2)+f(3)+…+f(2006)+f(2007)+f(2008)+f(2009)+f(2010)的值了嗎,寫出你的計算過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在Rt△ABC中,∠B=90°,AC=13,AB=5,O是AB上的點,以O為圓心,OB精英家教網(wǎng)為半徑作⊙O.
(1)當OB=2.5時,⊙O交AC于點D,求CD的長;
(2)當OB=2.4時,AC與⊙O的位置關系如何?試證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,AE∥BC,AE平分∠CAD,試說明∠B=∠C
證明:∵AE∥BC
已知

∴∠1=
∠B(兩直線平行,同位角相等)

∠2=
∠C(兩直線平行,內(nèi)錯角相等)

又∵AE平分∠CAD
∴∠1=∠2
角平分線的定義

∴∠
B
=∠
C

查看答案和解析>>

同步練習冊答案