【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,過點(diǎn)C的切線交BA的延長線于點(diǎn)D,CD=CB,CE∥AB交半圓于點(diǎn)E.
(1)求∠D的度數(shù);
(2)求證:以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.
【答案】(1)∠D=30°;(2)見解析.
【解析】
(1)連接AC,根據(jù)切線的性質(zhì)以及等腰三角形的性質(zhì)得出∠D=∠ACD=∠ABC,根據(jù)圓周角定理得出∠ACB=90°,然后根據(jù)三角形內(nèi)角和定理即可求得∠D的度數(shù);
(2)連接OC、BE,先證得△AOC是等邊三角形,然后證得四邊形COBE是平行四邊形即可證得結(jié)論.
(1)解:連接AC,
∵CD是⊙O的切線,
∴∠ACD=∠ABC,
∵AB是直徑,
∴∠ACB=90°,
∵CD=CB,
∴∠D=∠ABC,
∴∠D=∠ACD=∠ABC,
∵∠D+∠ACD+∠ABC+∠ACB=90°,
∴∠D=30°;
(2)證明:連接OC、BE,
∵∠D=∠ACD=30°,
∴∠CAB=60°,
∵OA=OC,
∴△AOC是等邊三角形,
∴AC=OC,∠AOC=60°,
∵CE∥AB,
∴AC=EB,
∴四邊形ACEB是等腰梯形,OC=BE,
∴∠CAB=∠EBA=60°,
∴∠AOC=∠EBA=60°,
∴OC∥BE,
∴四邊形COBE是平行四邊形,
∵OC=OB,
∴以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寶安區(qū)的某商場(chǎng)經(jīng)市場(chǎng)調(diào)查,預(yù)計(jì)一款夏季童裝能獲得市場(chǎng)青睞,便花費(fèi) 15000 元購進(jìn)了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進(jìn)貨,由于第二批進(jìn)貨數(shù)量是第一批進(jìn)貨數(shù)量的 2 倍,因此單價(jià)便宜了 10 元,購進(jìn)第二批童裝一共花費(fèi)了 27000 元.
(1)該店所購進(jìn)的第一批童裝的單價(jià)是多少元?
(2)兩批童裝按相同標(biāo)價(jià)出售,經(jīng)理根據(jù)市場(chǎng)情況,決定對(duì)第二批剩余的 100 件打七折銷售.若兩批童裝全部售完后,利潤不低于 30%,那么每件童裝標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校將開啟“大閱讀”活動(dòng),為了充實(shí)書吧藏書,學(xué)生會(huì)號(hào)召全年級(jí)學(xué)生捐書,得到各班的大力支持.同時(shí),年級(jí)部分備課組的老師也購買藏書充實(shí)到年級(jí)書吧,其中數(shù)學(xué)組購買了甲、乙兩種自然科學(xué)書籍若干本,用去699元;語文組購買了A、B兩種文學(xué)書籍若干本,用去6138元,已知A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價(jià)相同,乙種書與A種書的單價(jià)相同,若甲種書的單價(jià)比乙種書的單價(jià)多7元,則乙種書籍比甲種書籍多買了_____本.
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了“文明在我身邊”攝影比賽,已知每幅參賽作品成績(jī)記為x分(60≤x≤100).校方從600幅參賽作品中隨機(jī)抽取了部分步賽作品,統(tǒng)計(jì)了它們的成績(jī),并繪制了如下不完整的統(tǒng)計(jì)圖表.
“文明在我身邊”攝影比賽成績(jī)統(tǒng)計(jì)表
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x≤100 | b | 0.06 |
合計(jì) | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計(jì)表中a= ,b= ,c= .
(2)補(bǔ)全數(shù)分布直方圖;
(3)若80分以上的作品將被組織展評(píng),試估計(jì)全校被展評(píng)作品數(shù)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是△ABC的邊AB上一點(diǎn),點(diǎn)E為AC的中點(diǎn),過點(diǎn)C作CF∥AB交DE延長線于點(diǎn)F.
(1)求證:AD=CF.
(2)連接AF,CD,求證:四邊形ADCF為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(1,2)、B(–1,–2)是函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),BC∥x軸,AC∥y軸,△ABC的面積記為S,則( )
A. S = 2 B. S = 4 C. S = 8 D. S = 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AD是邊BC上的中線,過點(diǎn)A作AE∥BC,過點(diǎn)D作DE∥AB,DE與AC、AE分別交于點(diǎn)O、點(diǎn)E,聯(lián)結(jié)EC.
(1)求證:四邊形ADCE是平行四邊形;
(2)當(dāng)∠BAC=90°時(shí),求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線分別交軸,軸于點(diǎn),,點(diǎn)在第一象限,連接,,四邊形是正方形.
(1)如圖1,求直線的解析式;
(2)如圖2,點(diǎn)分別在上,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為點(diǎn),點(diǎn)在上,且,連接,,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為,求與之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;
(3)如圖3,在(2)的條件下,連接,,,點(diǎn)在上,且,點(diǎn)在上,連接交于點(diǎn),,且,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共50個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是試驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸到球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的概率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請(qǐng)估計(jì)當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近______;(精確到0.1);
(2)假如隨機(jī)摸一次,摸到白球的概率P(白球)=______;
(3)試估算盒子里白色的球有多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com