【題目】如圖,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 為 AC 上一點(diǎn),將△ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長(zhǎng)是( )
A.5B.C.3 D.
【答案】C
【解析】
根據(jù)勾股定理易求BC=10.根據(jù)折疊的性質(zhì)有AB=BE,AD=DE,∠A=∠DEB=90°,
在△CDE中,設(shè)AD=DE=x,則CD=8-x,EC=10-6=4.根據(jù)勾股定理可求x,在△ADE中,運(yùn)用勾股定理求BD.
解:∵∠A=90°,AB=6,AC=8,
∴BC=10.
根據(jù)折疊的性質(zhì),AB=BE,AD=DE,∠A=∠DEB=90°.
∴EC=10-6=4.
在△CDE中,設(shè)AD=DE=x,則CD=8-x,根據(jù)勾股定理得
(8-x)2=x2+42.
解得x=3.
∴DE=3.
∴BD==3,故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:如圖①,我們把一個(gè)四邊形的四邊中點(diǎn)依次連接起來得到的四邊形是平行四邊形嗎?
小敏在思考問題,有如下思路:連接.
結(jié)合小敏的思路作答.
(1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;
(參考小敏思考問題方法)
(2)如圖②,在(1)的條件下,若連接.
①當(dāng)與滿足什么條件時(shí),四邊形是矩形,寫出結(jié)論并證明;
②當(dāng)與滿足____時(shí),四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB和DE是直立在地面上的兩根立柱.AB=4m,某一時(shí)刻AB在陽光下的投影BC=3m.
(1)請(qǐng)你在圖中畫出此時(shí)DE在陽光下的投影.
(2)在測(cè)量AB的投影時(shí),同時(shí)測(cè)量出DE在陽光下的投影長(zhǎng)為8m,請(qǐng)你計(jì)算DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是邊長(zhǎng)為4的正方形,點(diǎn)E在邊AD所在的直線上,連接CE,以CE為邊,作正方形CEFG(點(diǎn)D,點(diǎn)F在直線CE的同側(cè)),連接BF,
圖1 圖2
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),則_____;
(2)如圖2,當(dāng)點(diǎn)E在線段AD上時(shí),,
①求點(diǎn)F到AD的距離;
②求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點(diǎn)O在線段AB上,AB=6,OC為射線,且∠BOC=45°.動(dòng)P以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā),沿射線OC做勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t 秒.
(1)如圖1,若AO=2.
①當(dāng) t=6秒時(shí),則OP= ,S△ABP= ;
②當(dāng)△ABP與△PBO相似時(shí),求t的值;
(2)如圖2,若點(diǎn)O為線段AB的中點(diǎn),當(dāng)AP=AB時(shí),過點(diǎn)A作AQ∥BP,并使得∠QOP=∠B,求AQBP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD沿對(duì)角線BD折疊,使點(diǎn)A落在平面上的F點(diǎn)處,DF交BC于點(diǎn)E.
(1)求證:△DCE≌△BFE;
(2)若CD=2,∠ADB=30°,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料并解決問題
進(jìn)位制是一種記數(shù)方式,可以用有限的數(shù)字符號(hào)代表所有的數(shù)值,使用數(shù)字符號(hào)的數(shù)目稱為基數(shù),基數(shù)為n,即可稱n進(jìn)制,F(xiàn)在最常用的是十進(jìn)制,通常使用10個(gè)阿拉伯?dāng)?shù)字0~9進(jìn)行記數(shù),特點(diǎn)是逢十進(jìn)一。
對(duì)于任意一個(gè)用進(jìn)制表示的數(shù),通常使用n個(gè)阿拉伯?dāng)?shù)字進(jìn)行記數(shù),特點(diǎn)是逢n進(jìn)一。我們可以通過以下方式把它轉(zhuǎn)化為十進(jìn)制:
例如:五進(jìn)制數(shù),記作: ,
七進(jìn)制數(shù),記作:
(1)請(qǐng)將以下兩個(gè)數(shù)轉(zhuǎn)化為十進(jìn)制: ____________, ____________ ;
(2)若一個(gè)正數(shù)可以用七進(jìn)制表示為,也可以用五進(jìn)制表示為,請(qǐng)求出這個(gè)數(shù)并用十進(jìn)制表示。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com