【題目】為宣傳66日世界海洋日,某校八年級舉行了主題為珍海洋資源,保護海洋生物多科性的知識黨春活動,為了解此次宛賽成鎮(zhèn)(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統(tǒng)計表和統(tǒng)計圖(如圖)

請根據(jù)圖表信息解答以下問題:

(1)本次調查一共隨機抽取了_____參賽學生的成績;

(2)a_____,b_____.

(3)所抽取的參賽學生的成績的中位數(shù)落在的組別_____

(4)請你估計,該校八年級全年級有500名學生,競賽成績達到80分以上(80)的學生約有多少人?

【答案】150人;(28,10;(3C組;(4320

【解析】

1)用D組的人數(shù)除以百分比即可求解;
2)用總人數(shù)乘以百分比求出a,總人數(shù)減去A,C,D三組的人數(shù)求出b;
3)本次調查一共隨機抽取50名學生,中位數(shù)落在C組;
4)用500乘以80分以上(含80分)的比例即可求解.

解:(1)本次調查一共隨機抽取學生:18÷36%=50(人),
2a=50×16%=8b=50-18-14-8=10;
3)本次調查一共隨機抽取50名學生,中位數(shù)落在C組,
4)該校八年級競賽成績達到80分以上(含80分)的學生有500×=320(人).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電子廠商投產一種新型電子產品,每件制造成本為元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關系可以近似地看作一次函數(shù).(利潤售價-制造成本)

寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關系式;

當銷售單價為多少元時,廠商每月獲得的利潤為萬元?

如果廠商每月的制造成本不超過萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程tx2﹣6x+m+4=0有兩個實數(shù)根x1、x2

(1)當t=m=1時,若x1<x2,求x1、x2;

(2)當m=1時,求t的取值范圍;

(3)當t=1時,若x1、x2滿足3|x1|=x2+4,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育器材室有A、B兩種型號的實心球,1A型球與1B型球的質量共7千克,3A型球與1B型球的質量共13千克.

1)每只A型球、B型球的質量分別是多少千克?

2)現(xiàn)有A型球、B型球的質量共17千克,則A型球、B型球各有多少只?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A1,0),B﹣3,0)兩點.

1)求該拋物線的解析式;

2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最。咳舸嬖,求出Q點的坐標;若不存在,請說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,ACBC,EAC邊的一點,FAB邊上一點,連接CF,BE于點D,且∠ACF=∠CBE,CG平分∠ACBBD于點G,

(1)如圖1,求證:CFBG;

(2)如圖2,延長CGABH,連接AG,過點CCPAGBE的延長線于點P,

求證:PBCPCF;

(3)如圖3,在(2)間的條件下,當∠GAC2FCH時,SAEG3,BG6,AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角三角形ABC的兩條高線BE、CD相交于點O,BECD

1)求證:BDCE;

2)判斷點O是否在∠BAC的平分線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;

(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內設雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

同步練習冊答案