如圖所示,拋物線x軸交于A、B兩點(diǎn),直線BD的函數(shù)表達(dá)式為,拋物線的對(duì)稱軸l與直線BD交于點(diǎn)C、與x軸交于點(diǎn)E

⑴求AB、C三個(gè)點(diǎn)的坐標(biāo).

⑵點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),以點(diǎn)A為圓心、以AP為半徑的圓弧與線段AC交于點(diǎn)M,以點(diǎn)B為圓心、以BP為半徑的圓弧與線段BC交于點(diǎn)N,分別連接AN、BMMN

①求證:AN=BM

②在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,四邊形AMNB的面積有最大值還是有最小值?并求出該最大值或最小值.

x

 

解:⑴令,

解得:,              

A(-1,0),B(3,0)···························· 2分

=,

∴拋物線的對(duì)稱軸為直線x=1,

x=1代入,得y=2,

C(1,2).  ································· 3分

⑵①在Rt△ACE中,tan∠CAE=,

∴∠CAE=60º,

由拋物線的對(duì)稱性可知l是線段AB的垂直平分線,

AC=BC,

∴△ABC為等邊三角形, 

AB= BC =AC = 4,∠ABC=ACB= 60º,

又∵AM=AP,BN=BP

BN = CM,       

∴△ABN≌△BCM,                

AN=BM.    

②四邊形AMNB的面積有最小值.   

設(shè)AP=m,四邊形AMNB的面積為S,

由①可知AB= BC= 4,BN = CM=BPSABC=×42=,

CM=BN= BP=4-m,CN=m,             

過(guò)MMFBC,垂足為F,

MF=MC•sin60º=,

SCMN===,······················· 7分

S=SABCSCMN

=-(

=   

m=2時(shí),S取得最小值3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過(guò)拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•思明區(qū)質(zhì)檢)已知二次函數(shù)y=ax2+bx+c(a<0)的部分圖象如圖所示,拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),對(duì)稱軸為直線x=1.
(1)若a=-1,求c-b的值;
(2)若實(shí)數(shù)m≠1,比較a+b與m(am+b)的大小,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(29):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過(guò)拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(27):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過(guò)拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省泰州市靖江市中考適應(yīng)性考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過(guò)拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案