如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點M、N分別在AD、CD上,若∠MBN=∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關系?請寫出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關系?請直接寫出猜想,不需證明.

【答案】分析:(1)先判定梯形ABCD是等腰梯形,根據(jù)等腰梯形的性質(zhì)可得∠A+∠BCD=180°,再把△ABM繞點B順時針旋轉(zhuǎn)90°,點A與點C重合,點M到達點M′,根據(jù)旋轉(zhuǎn)變換的性質(zhì),△ABM和△CBM′全等,根據(jù)全等三角形對應邊相等可得AM=CM′,BM=BM′,根據(jù)全等三角形對應角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后證明M′、C、N三點共線,再利用“邊角邊”證明△BMN和△BM′N全等,然后根據(jù)全等三角形對應邊相等即可得證;
(2)在∠CBN內(nèi)部作∠CBM′=∠ABM交CN于點M′,然后證明∠C=∠BAM,再利用“角邊角”證明△ABM和△CBM′全等,根據(jù)全等三角形對應邊相等可得AM=CM′,BM=BM′,再證明∠MBN=∠M′BN,利用“邊角邊”證明△MBN和△M′BN全等,根據(jù)全等三角形對應邊相等可得MN=M′N,從而得到MN=CN-AM.
解答:解:(1)MN=AM+CN.
理由如下:
如圖,∵BC∥AD,AB=BC=CD,
∴梯形ABCD是等腰梯形,
∴∠A+∠BCD=180°,
把△ABM繞點B順時針旋轉(zhuǎn)90°到△CBM′,則△ABM≌△CBM′,
∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°,
∴點M′、C、N三點共線,
∵∠MBN=∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=∠ABC,
∴∠MBN=∠M′BN,
在△BMN和△BM′N中,

∴△BMN≌△BM′N(SAS),
∴MN=M′N,
又∵M′N=CM′+CN=AM+CN,
∴MN=AM+CN;


(2)MN=CN-AM.
理由如下:如圖,作∠CBM′=∠ABM交CN于點M′,
∵∠ABC+∠ADC=180°,
∴∠BAD+∠C=360°-180°=180°,
又∵∠BAD+∠BAM=180°,
∴∠C=∠BAM,
在△ABM和△CBM′中,,
∴△ABM≌△CBM′(ASA),
∴AM=CM′,BM=BM′,
∵∠MBN=∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)=∠ABC-∠MBN=∠ABC,
∴∠MBN=∠M′BN,
在△MBN和△M′BN中,
,
∴△MBN≌△M′BN(SAS),
∴MN=M′N,
∵M′N=CN-CM′=CN-AM,
∴MN=CN-AM.
點評:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰梯形的兩底角互補,利用旋轉(zhuǎn)變換作輔助線,構(gòu)造出全等三角形,把MN、AM、CN通過等量轉(zhuǎn)化到兩個全等三角形的對應邊是解題的關鍵,本題靈活性較強,對同學們的能力要求較高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點G在對角線AC,并把正方形OFGE繞頂點A沿逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當а=90°時,請直接寫出線段DE與BF的數(shù)量關系和位置關系;
(2)如圖③,當0°<а<90°時,(1)中的結(jié)論是否發(fā)生改變?若不變,請給出證明.若發(fā)生改變,請舉例說明;
(3)如圖④,將圖①、圖③中的兩個正方形都改為矩形,其他條件不變,設AB=kAD(k>0),當0°<а<90°時,(1)中的結(jié)論是否發(fā)生改變?若不變,請給出證明.若發(fā)生改變,請寫出改變后的新結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)填空:如圖1,在正方形PQRS中,已知點M、N分別在邊QR、RS上,且QM=RN,連接PN、SM相交于點O,則∠POM=
 
度;
(2)如圖2,在等腰梯形ABCD中,已知AB∥CD,BC=CD,∠ABC=60度.以此為部分條件,精英家教網(wǎng)構(gòu)造一個與上述命題類似的正確命題并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、如圖1,在正方形ABCD中,若點E是△DBC內(nèi)的一點,且DE=DC,BE=CE.
(1)連接AE.說明△ABE≌△DCE的理由;
(2)求∠BDE與∠CDE度數(shù)的比值;
(3)拓展探索:若只將題中的條件“正方形ABCD”換成條件“梯形ABCD中,AD∥BC,AB=DC,2∠DBC=∠DCB”.如圖2,研究∠BDE與∠CDE度數(shù)的比值是否與(2)中的結(jié)論相同,寫出你的研究結(jié)果并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1,在正方形ABCD中,對角線AC與BD相交于點E,AF平分∠BAC,交BD于點F.
(1)求證:EF+
1
2
AC=AB;
(2)點C1從點C出發(fā),沿著線段CB向點B運動(不與點B重合),同時點A1從點A出發(fā),沿著BA的延長線運動,點C1與A1的運動速度相同,當動點C1停止運動時,另一動點A1也隨之停止運動.如圖2,A1F1平分∠BA1C1,交BD于點F1,過點F1作F1E1⊥A1C1,垂足為E1,請猜想E1F1
1
2
A1C1與AB三者之間的數(shù)量關系,并證明你的猜想;
(3)在(2)的條件下,當A1E1=3,C1E1=2時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

課本練習拓展:
(1)如圖1,在正方形ABCD中,E是BC上的一點,△ABE經(jīng)過旋轉(zhuǎn)后得到△ADF,
①旋轉(zhuǎn)中心是點
A
A
;旋轉(zhuǎn)角度最少是
90
90
度.
②愛動腦筋的小兵,在CD邊上取點H使得∠HAE=45°,他發(fā)現(xiàn):HE=BE+HD,他的發(fā)現(xiàn)正確嗎?請你判斷并說明理由.
(2)思維闖關:
如圖2,在直角梯形ABCD中AD∥BC(BC>AD),∠B=90°BC=AB=6,E是 AB上一點,且∠DCE=45°,BE=2,則DE的長=
5
5
.(小兵運用解答(1)中所積累的經(jīng)驗和知識做出了該題)
(3)動手闖過:
①小明有一塊如圖3所示的紙片,其中∠A=∠C=90°,AB=AD.小明請小兵只剪一刀后把它拼成正方形,請你幫助小兵在圖中畫出剪拼得示意圖.
②小兵好朋友小紅現(xiàn)有兩塊同小明一樣的紙片,如圖4,小兵能否在每塊上各剪一刀,然后拼成一個大的正方形?若能,請你畫出剪法和拼法的示意圖;若不能,簡要說明理由.

查看答案和解析>>

同步練習冊答案