(1999•北京)如圖,ABCD為圓內接四邊形,E是AD延長線上一點,如果∠B=60°,那么∠EDC等于( )
【答案】分析:先根據圓內接四邊形的性質求出∠ADC的度數(shù),再根據平角的性質求出∠EDC的度數(shù)即可.
解答:解:∵ABCD為圓內接四邊形,∠B=60°,
∴∠ADC=180°-∠B=180°-60°=120°,
∵∠ADC+∠EDC=180°,
∴∠EDC=180°-120°=60°.
故選B.
點評:本題考查的是圓內接四邊形及平角的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(1999•北京)如圖,已知△ABC中,∠ACB=90°,過C點作CD⊥AB,垂足為D,且AD=m,BD=n,AC2:BC2=2:1,又關于x的方程x2-2(n-1)x+m2-12=0兩實數(shù)根的差的平方小于192,求:m,n為整數(shù)時,一次函數(shù)y=mx+n的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(1999•北京)如圖,已知△ABC中,∠ACB=90°,過C點作CD⊥AB,垂足為D,且AD=m,BD=n,AC2:BC2=2:1,又關于x的方程x2-2(n-1)x+m2-12=0兩實數(shù)根的差的平方小于192,求:m,n為整數(shù)時,一次函數(shù)y=mx+n的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(1999•北京)如圖,已知△ABC中,∠ACB=90°,過C點作CD⊥AB,垂足為D,且AD=m,BD=n,AC2:BC2=2:1,又關于x的方程x2-2(n-1)x+m2-12=0兩實數(shù)根的差的平方小于192,求:m,n為整數(shù)時,一次函數(shù)y=mx+n的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年北京市中考數(shù)學試卷 題型:解答題

(1999•北京)如圖,已知△ABC中,∠ACB=90°,過C點作CD⊥AB,垂足為D,且AD=m,BD=n,AC2:BC2=2:1,又關于x的方程x2-2(n-1)x+m2-12=0兩實數(shù)根的差的平方小于192,求:m,n為整數(shù)時,一次函數(shù)y=mx+n的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(1999•北京)如圖所示,已知AB是⊙O中一條長為4的弦,P是⊙O上一動點,且,問是否存在以A、P、B為頂點的面積最大的三角形?試說明理由;若存在,求出這個三角形的面積.

查看答案和解析>>

同步練習冊答案