如圖,△ABC內(nèi)接于⊙O,AD是⊙O的直徑,∠ABC=30°,則∠CAD=______度.
∵AD是⊙O的直徑,
∴∠ACD=90°;
∵∠CDA=∠ABC=30°,(同弧所對的圓周角相等)
∴∠CAD=90°-∠CDA=60°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在半徑為4的⊙O中,AB,CD是兩條直徑,M是OB的中點,CM的延長線交⊙O于點E,設DE=
a
(a>0)
,EM=x.
(1)用含x和a的代數(shù)式表示MC的長,并求證:x2-
64-a
•x+12=0

(2)當a=15,且EM>MC時,求sin∠EOM的值;
(3)根據(jù)圖形寫出EM的長的取值范圍.試問:在弧DB上是否存在一點E,使EM的長是關于x的方x2-
64-a
•x+12=0
的相等實數(shù)根?如果存在,求出sin∠EOM的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,OA、OB是⊙O的半徑,∠O=40°,∠B=50°,則∠A等于( 。
A.80°B.70°C.60°D.30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,∠A是⊙O的圓周角且∠A=40°,求∠OBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,AD是⊙O的直徑,∠ABC=25°,則∠CAD的度數(shù)為( 。
A.25°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=AC,點E,F(xiàn)分別在
AC
BC
上,若∠ABC=50°,則∠BEC=______°,∠BFC=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知,如圖,優(yōu)弧
ACB
的度數(shù)為280°,D是由弦AB與優(yōu)弧
ACB
所圍成的弓形區(qū)域內(nèi)的任意點,連接AD、BD.試判斷∠ADB的度數(shù)范圍?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是
BD
的中點,CE⊥AB于E,BD交CE于點F.
(1)求證:CF﹦BF;
(2)若CD﹦6,AC﹦8,則⊙O的半徑為______,CE的長是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AD是圓O的直徑,BC切圓O于點D,AB,AC與圓O相交于點E,F(xiàn).求證:AE•AB=AF•AC.

查看答案和解析>>

同步練習冊答案