【題目】某中學為了了解七年級男生入學時的跳繩情況,隨機選取50名剛入學的男生進行個人一分鐘跳繩測試,并以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖(如圖所示).根據(jù)圖表解答下列問題:
(1)a= ,b= ;
(2)這個樣本數(shù)據(jù)的中位數(shù)落在第 組;
(3)若七年級男生個人一分鐘跳繩次數(shù)x≥130時成績?yōu)閮?yōu)秀,則從這50名男生中任意選一人,跳繩成績?yōu)閮?yōu)秀的概率為多少;
(4)若該校七年級入學時男生共有150人,請估計此時該校七年級男生個人一分鐘跳繩成績?yōu)閮?yōu)秀的人數(shù).
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<70 | 4 |
第2組 | 70≤x<90 | a |
第3組 | 90≤x<110 | 18 |
第4組 | 110≤x<130 | b |
第5組 | 130≤x<150 | 4 |
第6組 | 150≤x<170 | 2 |
【答案】(1)a=10, b=12;(2)3;(3);(4)18
【解析】
(1)根據(jù)條形統(tǒng)計圖的顯示可以得出a,根據(jù)總人數(shù)減去其他的人數(shù)可得到b;
(2)根據(jù)中位數(shù)的定義可得結果;
(3)用大于130的人數(shù)除以總人數(shù)可得到結果;
(4)用總數(shù)150乘以可得到結果.
(1)根據(jù)頻數(shù)分布直方圖知:a=10,b=50-4-10-18-4-2=12;
(2)中位數(shù)是位置處于中間的數(shù),共50個數(shù)據(jù),處于中間的是第25,26個,正好落在第3小組.
(3)根據(jù)已知優(yōu)秀的人數(shù)有2+4=6人,所以優(yōu)秀的概率為:.
(4)150=18.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一臺放置在水平桌面上的筆記本電腦,將其側面抽象成如右圖所示的幾何圖形,若顯示屏所在面的側邊AO與鍵盤所在面的側邊BO長均為24cm,點P為眼睛所在位置,D為AO的中點,連接PD,當PD?AO時,稱點P為“最佳視角點”,作PC?BC,垂足C在OB的延長線上,且BC=12cm.
(1)當PA=45cm時,求PC的長;
(2)若?AOC=120°時,“最佳視角點”P在直線PC上的位置會發(fā)生什么變化?此時PC的長是多少?請通過計算說明.(結果精確到0.1cm,可用科學計算器,參考數(shù)據(jù): , )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且=.連接AF并延長交⊙O于點E,連接AD,DE.若CF=2,AF=3.下列結論:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正確的是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點坐標為,且與y軸交于點C(0,2),與x軸交于A,B兩點(點A在點B的左邊).
(1)求拋物線的表達式及A,B兩點的坐標.
(2)在(1)中拋物線的對稱軸l上是否存在一點P,使AP+CP的值最?若存在,求AP+CP的最小值;若不存在,請說明理由;
(3)在以AB為直徑的⊙M中,CE與⊙M相切于點E,CE交x軸于點D,求直線CE的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD、正方形A1B1C1D1、正方形A2B2C2D2均位于第一象限內,它們的邊平行于x軸或y軸,其中點A、A1、A2在直線OM上,點C、C1、C2在直線ON上,O為坐標原點,已知點A的坐標為(3,3),正方形ABCD的邊長為1.若正方形A2B2C2D2的邊長為2011,則點B2的坐標為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是利用四邊形的不穩(wěn)定性制造的一個移動升降裝修平臺,其基本圖形是菱形,主體部分相當于由6個菱形相互連接而成,通過改變菱形的角度,從而可改變裝修平臺高度.
(1)如圖(1)是一個基本圖形,已知AB=1米,當∠ABC為60°時,求AC的長及此時整個裝修平臺的高度(裝修平臺的基腳高度忽略不計);
(2)當∠ABC從60°變?yōu)?/span>90°(如圖(2)是一個基本圖形變化后的圖形)時,求整個裝修平臺升高了多少米.[結果精確到0.1米]
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、B在數(shù)軸上分別表示數(shù)a,b.若A、B兩點間的距離記為d,則d和a,b之間的數(shù)量關系是d=|a-b|.
(1)數(shù)軸上有理數(shù)x與有理數(shù)-2所對應兩點之間的距離可以表示為______;
(2)|x+6|可以表示數(shù)軸上有理數(shù)x與有理數(shù)_______所對應的兩點之間的距離;
若|x+6|= |x -2|,則x=______;
(3)若a=1,b=-2,將數(shù)軸折疊,使得A點與﹣7表示的點重合,則B點與數(shù)______表示的點P重合;
(4)若數(shù)軸上M、N兩點之間的距離為11(M在N的左側),且M、N兩點經過(3)中折疊后互相重合,則M、N兩點表示的數(shù)分別是:M:_____, N:_______;
(5)在題(3)的條件下,點A為定點,點B、P為動點,若移動點B、P中一點后,能否使相鄰兩點間距離相等?若能,請寫出移動方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】C,D兩城蔬菜緊缺,A,B兩城決定支援,A城有蔬菜20噸,B城有蔬菜40噸,C城需要蔬菜16噸,D城需要蔬菜44噸,已知A到C,D的運輸費用分別為200元/噸,220元/噸,B到C,D的運輸費用分別為300元/噸,340元/噸,規(guī)定A向C城運的噸數(shù)不小于B向C城運的噸數(shù),設A城向C城運x噸,請回答下列問題:
(1)根據(jù)題意條件,填寫下列表格:
(2)設總費用為y(元),求出y(元)與x(噸)的函數(shù)關系式,并寫出x的取值范圍;
(3)怎樣調運貨物能使總費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E為線段BC上一點,AE交CD于G,且GC=GE,EF⊥BC交AB于點F.
(1)求證:AE2=AFAB;
(2)連FG,若BE=2CE,求tan∠AFG;
(3)如圖2,當tanB= 時,CE=FE(請直接寫出結果,不需要解答過程).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com