【題目】已知,二次函數(shù)y=ax2﹣5x+c的圖象如圖.
(1)求這個二次函數(shù)的解析式和它的圖象的頂點坐標(biāo);
(2)觀察圖象,回答:何時y隨x的增大而增大;何時y隨x的增大而減小.
【答案】(1) y=x2﹣5x+4,頂點坐標(biāo)( );(2)當(dāng)x>,y隨x的增大而增大;當(dāng)x<,y隨x的增大而減小.
【解析】
(1)由圖知,該二次函數(shù)經(jīng)過(1,0)、(4,0),可將這兩點坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;然后將所得函數(shù)解析式化為頂點式,從而求出其頂點坐標(biāo);
(2)根據(jù)(1)得出的拋物線的對稱軸及開口方向,分段討論拋物線的增減性.
(1)根據(jù)二次函數(shù)y=ax2﹣5x+c的圖象可得:
解得:a=1,c=4;
所以這個二次函數(shù)的解析式是y=x2﹣5x+4;
y=x2﹣5x+4=﹣=
∴它的圖象的頂點坐標(biāo)();
(2)當(dāng)x>,y隨x的增大而增大;
當(dāng)x<,y隨x的增大而減小.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC+BC=8,點O是斜邊AB上一點,以O為圓心的⊙O分別與AC,BC相切于點D,E.
(1)當(dāng)AC=2時,求⊙O的半徑;
(2)設(shè)AC=x,⊙O的半徑為y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于受到手機更新?lián)Q代的影響,某手機店經(jīng)銷的甲品牌手機四月份售價比三月份每臺降價500元.如果賣出相同數(shù)量的甲品牌手機,那么三月份銷售額為9萬元,四月份銷售額只有8萬元.
(1)四月份甲品牌手機每臺售價為多少元?
(2)為了提高利潤,該店計劃五月份購進甲品牌及乙品牌手機銷售,已知甲每臺進價為3500元,乙每臺進價為4000元,預(yù)算用不多于7.6萬元且不少于7.5萬元的資金購進這兩種手機共20臺,問按此預(yù)算要求,可以有幾種進貨方案,請寫出所有進貨方案?
(3)該店計劃五月在銷售甲品牌手機時,在四月份售價基礎(chǔ)上每售出一臺甲品牌手機再返還顧客現(xiàn)金元,而乙品牌手機按銷售價4400元銷售,如要使(2)中所有方案獲利相同,應(yīng)取何值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,菱形ABCD的邊長為6,∠DAB=60°,點E是AB的中點,連接AC、EC.點Q從點A出發(fā),沿折線A—D—C運動,同時點P從點A出發(fā),沿射線AB運動,P、Q的速度均為每秒1個單位長度;以PQ為邊在PQ的左側(cè)作等邊△PQF,△PQF與△AEC重疊部分的面積為S,當(dāng)點Q運動到點C時P、Q同時停止運動,設(shè)運動的時間為t.
(1)當(dāng)?shù)冗?/span>△PQF的邊PQ恰好經(jīng)過點D時,求運動時間t的值;當(dāng)?shù)冗?/span>△PQF的邊QF恰好經(jīng)過點E時,求運動時間t的值;
(2)在整個運動過程中,請求出S與t之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;
(3)如圖2,當(dāng)點Q到達C點時,將等邊△PQF繞點P旋轉(zhuǎn)α ° (0<α<360°),直線PF 分別與直線AC、直線CD交于點M、N.是否存在這樣的α ,使△CMN為等腰三角形?若存在,請直接寫出此時線段CM的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=﹣x2+bx+c的圖象的最高點是(﹣1,﹣3),則b、c的值分別是( 。
A. b=2,c=4 B. b=﹣2,c=﹣4 C. b=2,c=﹣4 D. b=﹣2,c=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形的邊長和一條對角線的長均為2 cm,則菱形的面積為( )
A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D是半圓O上的三等分點,直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點F.
(1)求∠AFE的度數(shù);
(3)求陰影部分的面積(結(jié)果保留π和根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,設(shè)D為銳角△ABC內(nèi)一點,∠ADB=∠ACB+90°.
(1)求證:∠CAD+∠CBD=90°;
(2)如圖2,過點B作BE⊥BD,BE=BD,連接EC,若ACBD=ADBC,
①求證:△ACD∽△BCE;
②求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據(jù)所給的直角坐標(biāo)系(O是坐標(biāo)原點),解答下列問題:
(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標(biāo);
(2)求在平移過程中線段AB掃過的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com