【題目】如圖,已知BC=EC,∠BCE=∠ACD,如果只添加一個(gè)條件,使△ABC ≌ △DEC,則添加的條件不能為( )
A. ∠B=∠E B. AC=DC C. ∠A=∠D D. AB=DE
【答案】D
【解析】
先求出∠ACB=∠DCE,全等三角形的判定定理有SAS,ASA,AAS,SSS,根據(jù)以上定理逐個(gè)判斷即可.
∵∠BCE=∠ACD,
∴∠BCE+∠ACE=∠ACD+∠ACE,
∴∠ACB=∠DCE,
A、∠B=∠E,BC=EC,∠ACB=∠DCE,符合全等三角形的判定定理ASA,能推出△ABC≌△DEC,故本選項(xiàng)錯(cuò)誤;
B、AC=DC,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理SAS,能推出△ABC≌△DEC,故本選項(xiàng)錯(cuò)誤;
C、∠A=∠D,∠ACB=∠DCE,BC=EC,符合全等三角形的判定定理AAS,能推出△ABC≌△DEC,故本選項(xiàng)錯(cuò)誤;
D、AB=DE,BC=EC,∠ACB=∠DCE,不符合全等三角形的判定定理,不能推出△ABC≌△DEC,故本選項(xiàng)正確;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC=4,點(diǎn)D為AB的中點(diǎn),M,N分別在BC,AC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:
①DN=DM; ② ∠NDM=90°; ③ 四邊形CMDN的面積為4; ④△CMN的面積最大為2.
其中正確的結(jié)論有( )
A. ①②④; B. ①②③; C. ②③④; D. ①②③④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)三角形的三邊長(zhǎng)分別為5、7、8,則其內(nèi)切圓的半徑為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線m與直線n垂直相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B 在直線n上運(yùn)動(dòng),AC、BC分別是∠BAO和∠ABO的角平分線.
(1)求∠ACB的大;
(2)如圖2,若BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值;
(3)如圖3,過(guò)C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CF∥OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角板的直角頂點(diǎn)C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,則∠ACB的度數(shù)為 .
②若∠ACB=140°,則∠DCE的度數(shù)為 .
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說(shuō)明理由.
(3)當(dāng)∠ACE<90°且點(diǎn)E在直線AC的上方時(shí),當(dāng)這兩塊三角尺有一組邊互相平行時(shí),請(qǐng)直接寫(xiě)出∠ACE角度所有可能的值(不必說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長(zhǎng)線交AB于點(diǎn)D
(1)求證:AO平分∠BAC;
(2)若BC=6,sin∠BAC= ,求AC和CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣1,1)、B(4,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點(diǎn)F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點(diǎn)G,過(guò)點(diǎn)G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點(diǎn)E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點(diǎn).點(diǎn)P從點(diǎn)C出發(fā),沿射線CD方向勻速運(yùn)動(dòng),速度為每秒
個(gè)單位長(zhǎng)度;同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā),沿x軸正方向勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度.點(diǎn)M是直線PQ與拋物線的一個(gè)交點(diǎn),當(dāng)運(yùn)動(dòng)到t秒時(shí),QM=2PM,直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一列數(shù)-1,2,-1,2,2,-1,2,2,2,-1,…其中相鄰的兩個(gè)-1被2隔開(kāi),第n對(duì)-1之問(wèn)有n個(gè)2,則第21個(gè)數(shù)是______,這一列數(shù)的前2019個(gè)數(shù)的和為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.
(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA= ,求BH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com