【題目】已知I是△ABC的內(nèi)心,AI延長線交△ABC外接圓于D,連BD.

(1)在圖1中,求證:DB=DI;
(2)如圖2,若AB為直徑,且OI⊥AD于I點(diǎn),DE切圓于D點(diǎn),求sin∠ADE的值.

【答案】
(1)解:連接BI,

∵I是△ABC的內(nèi)心,

∴AD平分∠CAB,BI平分∠ABC,

∴∠CAD=∠BAD,∠ABI=∠CBI,

∵∠CAD=∠DBC,

∴∠DAB=∠CBD,

∵∠DBI=∠DBC+∠CBI,

∠DIB=∠DAB+∠IBA,

∴∠DIB=∠DBI,

∴BD=DI;


(2)解:連接BD,

∵AB為直徑,

∴∠ADB=90°,

∵OI⊥AD,

∴AD=2DI,

∵BD=DI,

∴AD=2BD,

∴AB= = BD,

∵DE切圓于D點(diǎn),

∴∠ABD=∠ADE,

∴sin∠ADE=sin∠ABD= =


【解析】(1)連接BI,依據(jù)三角形的內(nèi)心的定義可得到AD平分∠CAB,BI平分∠ABC,根據(jù)角平分線的定義得到∠CAD=∠BAD,∠ABI=∠CBI,得到結(jié)合圓周角定理可得到∠DAB=∠CBD,然后再依據(jù)三角形的外角的性質(zhì)得到∠DIB=∠DBI,最后,依據(jù)等角對等邊的性質(zhì)可得到BD=DI;
(2)連接BD,根據(jù)圓周角定理的推理可得到∠ADB=90°,然后再依據(jù)垂徑定理得到AD=2DI,接下來,利用勾股定理求得AB的長,,根據(jù)弦切角定理得到∠ABD=∠ADE,接下來,依據(jù)銳角三角函數(shù)的定義求解即可.
【考點(diǎn)精析】利用圓周角定理對題目進(jìn)行判斷即可得到答案,需要熟知頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)為線段上一點(diǎn),一副直角三角板的直角頂點(diǎn)與點(diǎn)重合,直角邊在線段上,

1)將圖1中的三角板繞著點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)到如圖2所示的位置,若,則________;猜想的數(shù)量關(guān)系為________;

2)將圖1中的三角板繞著點(diǎn)沿逆時(shí)針方向按每秒的速度旋轉(zhuǎn)一周,三角板不動(dòng),請問幾秒時(shí)所在的直線平分?

3)將圖1中的三角板繞著點(diǎn)沿逆時(shí)針方向按每秒的速度旋轉(zhuǎn)一周,同時(shí)三角板繞著點(diǎn)沿順時(shí)針方向按每秒的速度旋轉(zhuǎn)(隨三角板停止而停止),請計(jì)算幾秒時(shí)的角分線共線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點(diǎn),且AP=AC.

(1)求證:AP是⊙O的切線;
(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E為CD上一點(diǎn),以AE為對稱軸將△ADE翻折得到△AFE,延長EF交BC于G,若BG=CG,則sin∠EGC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ABCD

1)如圖1,請直接寫出∠BME、∠E、∠END的數(shù)量關(guān)系為   ;

2)如圖2,∠BME與∠CNE的角平分線所在的直線相交于點(diǎn)P,試探究∠P與∠E之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖3,∠ABM=MBE,∠CDN=NDE,直線MB、ND交于點(diǎn)F,則=___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 ,是一個(gè)8×10正方形格紙,ABCA點(diǎn)坐標(biāo)為(-2,1.

1)補(bǔ)全坐標(biāo)系并指出ABCABC'滿足什么幾何變換(直接寫答案)?

2)作ABC'關(guān)于x軸對稱圖形A''B''C'';

3ABCA''B''C''滿足什么幾何變換?求A''、B''、C''三點(diǎn)坐標(biāo)(直接寫答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC向右平移3個(gè)單位長度,再向上平移2個(gè)單位長度,可以得到.

(1)畫出平移后的;

(2)寫出三個(gè)頂點(diǎn)的坐標(biāo);

(3)已知點(diǎn)Px軸上,、、P為頂點(diǎn)的三角形面積為4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊(duì)分別同時(shí)開挖兩條600米長的管道,所挖管道長度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說法中,正確的個(gè)數(shù)有( )個(gè).
①甲隊(duì)每天挖100米;
②乙隊(duì)開挖兩天后,每天挖50米;
③當(dāng)x=4時(shí),甲、乙兩隊(duì)所挖管道長度相同;
④甲隊(duì)比乙隊(duì)提前2天完成任務(wù).

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于A,B與y軸交于C,過C作x軸的平行線交拋物線于點(diǎn)D,過點(diǎn)D作x軸的垂線交x軸于E,點(diǎn)D的坐標(biāo)為(2,3)

(1)求拋物線的解析式;
(2)點(diǎn)P為第一象限直線DE右側(cè)拋物線上一點(diǎn),連接AP交y軸于點(diǎn)F,連接PD、DF,設(shè)點(diǎn)P的橫坐標(biāo)為t,△PFD的面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)P向下平移3個(gè)單位得到點(diǎn)Q,連接AQ、EQ,若∠AQE=45°,求點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案