【題目】如圖所示,BC是圓O的直徑,點A,F(xiàn)在圓O上,連接AB,BF.
(1)如圖1,若點A、F把半圓三等分,連接OA,OA與BF交于點E.求證:E為OA的中點;
(2)如圖2,若點A為弧 的中點,過點A作AD⊥BC,垂足為點D,AD與BF交于點G.求證:AG=BG.
【答案】
(1)證明:∵A、F為半圓三等分點,
∴∠AOB= ×180°=60°,
∵OA=OB,
∴△OAB為等邊三角形.
∵A為弧BF中點,
∴OA⊥BF,
∴BE平分OA,
∴E為OA中點
(2)證明:連接AF,AC,
∵A為弧BF中點,
∴ = ,
∴∠ABF=∠F.
∵ = ,
∴∠C=∠F,
∴∠C=∠ABF.
∵BC為圓O的直徑,
∴∠BAC=90°,
∴∠BAD+∠CAD=90°.
∵AD⊥BC,
∴∠C+∠CAD=90°,
∴∠ABG=∠BAG,
∴AG=BG.
【解析】(1)先求出∠AOB的度數(shù),故可判斷出△OAB為等邊三角形,再由A為弧BF中點可得出OA⊥BF,進而可得出結(jié)論;(2)連接AF,AC,根據(jù)弧相等可得出∠C=∠ABF,由圓周角定理可得出∠BAC=90°,再由直角三角形的性質(zhì)得出∠ABG=∠BAG,進而可得出結(jié)論.
【考點精析】通過靈活運用圓心角、弧、弦的關(guān)系和圓周角定理,掌握在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題.
某校學(xué)生積極為地震災(zāi)區(qū)捐款奉獻愛心.小穎隨機抽查其中30名學(xué)生的捐款情況如下:(單位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、50.
(1)這30名學(xué)生捐款的最大值、最小值、極差、平均數(shù)各是多少?
(2)將30名學(xué)生捐款額分成下面5組,請你完成頻數(shù)統(tǒng)計表:
(3)根據(jù)上表,作出頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系中有三點A(﹣2,1)、B(3,1)、C(2,3).請回答如下問題:
(1)在坐標系內(nèi)描出點A、B、C的位置,并求△ABC的面積;
(2)在平面直角坐標系中畫出△A′B′C′,使它與△ABC關(guān)于x軸對稱,并寫出△A′B′C′三頂點的坐標;
(3)若M(x,y)是△ABC內(nèi)部任意一點,請直接寫出這點在△A′B′C′內(nèi)部的對應(yīng)點M′的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,,垂足為G,若,則AE的邊長為
A. B. C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)做一道數(shù)學(xué)題,已知兩個多項式A、B,B=3x2y-5xy+x+7,試求A+B,這位同學(xué)把A+B看成A-B,結(jié)果求出的答案為6x2y+12xy-2x-9.
(1)請你替這位同學(xué)求出的正確答案;
(2)當x取任意數(shù)值,A-3B的值是一個定值,求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點A、B所表示的數(shù)分別為a和b,且滿足|a+3|+(b-9)2018=0,O為原點
(1) 試求a和b的值
(2) 點C從O點出發(fā)向右運動,經(jīng)過3秒后點C到A點的距離是點C到B點距離的3倍,求點C的運動速度?
(3) 點D以1個單位每秒的速度從點O向右運動,同時點P從點A出發(fā)以5個單位每秒的速度向左運動,點Q從點B出發(fā),以20個單位每秒的速度向右運動.在運動過程中,M、N分別為PD、OQ的中點,問的值是否發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名工人一天可以加工個零件,或者加工個零件,每一個零件和兩個零件可以組裝成一套零件,某車間共有名工人,問應(yīng)如何安排這些工人,使加工出來的零件剛好可以配套.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點,D是BC延長線上一點,過點D的直線交AC于E點,且△AEF為等邊三角形
(1)求證:△DFB是等腰三角形;
(2)若DA= AF,求證:CF⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=﹣x+6的圖象與坐標軸交于A、B兩點,AE平分∠BAO,交x軸于點E.
(1)求點B的坐標及直線AE的表達式;
(2)過點B作BF⊥AE,垂足為F,在y軸上有一點P,使線段PE+PF的值最小,求點P的坐標;
(3)若將已知條件“AE平分∠BAO,交x軸于點E”改變?yōu)?/span>“點E是線段OB上的一個動點(點E不與點O、B重合)”,過點B作BF⊥AE,垂足為F,以EF為邊作正方形EFMN,當點M落在坐標軸上時,求E點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com