(2006•柳州)如圖,一天早上,小張正向著教學(xué)樓AB走去,他發(fā)現(xiàn)教學(xué)樓后面有一水塔DC,可過了一會抬頭一看:“怎么看不到水塔了”心里很是納悶.經(jīng)過了解,教學(xué)樓、水塔的高分別為20m和30m,它們之間的距離為30m,小張身高為1.6m(眼睛到頭頂?shù)木嚯x忽略不計).小張要想看到水塔,他與教學(xué)樓的距離至少應(yīng)有多少m?

【答案】分析:由于AH∥DG,有△EAH∽△EDG?故可用相似三角形的性質(zhì)求解.
解答:解:如圖所示,
AH=18.4,DG=28.4,HG=30;
∵AH∥DC,
∴△EAH∽△EDG,
,
,
解得:EH=55.2.
即他與教學(xué)樓的距離至少應(yīng)有55.2米.
點評:本題利用了相似三角形的性質(zhì)求解,難易程度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.
(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年九年級中考復(fù)習(xí)階段性測試數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.
(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省深圳市高中階段學(xué)校招生考試數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.
(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西柳州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•柳州)如圖,已知二次函數(shù)y=ax2+bx+c的象經(jīng)過A(-1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.
(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標(biāo);
(2)若直線y=kx+d經(jīng)過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經(jīng)過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣西柳州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•柳州)如圖,拋物線y=-x2+2mx+m+2的圖象與x軸交于A(-1,0),B兩點,在x軸上方且平行于x軸的直線EF與拋物線交于E,F(xiàn)兩點,E在F的左側(cè),過E,F(xiàn)分別作x軸的垂線,垂足是M,N.
(1)求m的值及拋物線的頂點坐標(biāo);
(2)設(shè)BN=t,矩形EMNF的周長為C,求C與t的函數(shù)表達(dá)式;
(3)當(dāng)矩形EMNF的周長為10時,將△ENM沿EN翻折,點M落在坐標(biāo)平面內(nèi)的點記為M',試判斷點M'是否在拋物線上?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案