(2001•河南)如圖,在△ABC中,AD平分∠BAC,AB+BD=AC,求∠B:∠C的值.

【答案】分析:先在AC上截取AE=AB,連接DE.
這樣求出來全等三角形:△ABD和△AED,那么就有∠B=∠AED,DE=DB,
再加上已知條件,AB+BD=AC,可得CE=DE,
就有∠AED=2∠C,即∠B=2∠C,那么∠B:∠C就可求出來了.
解答:解:在AC上截取AE=AB,連接DE
∵∠BAD=∠DAE,AD=AD
∴△ABD≌△AED,
∴∠B=∠AED,BD=DE
又∵AB+BD=AC,
∴CE=BD=DE
∴∠C=∠EDC,
∴∠B=∠AED=2∠C
∴∠B:∠C=2:1.
點評:本題考查了角平分線的性質(zhì),還有全等三角形的判定和性質(zhì)等知識,以及三角形的外角等于不相鄰的兩個內(nèi)角之和.作出輔助線是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結(jié)論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關(guān)系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結(jié)論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關(guān)系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結(jié)論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關(guān)系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年河南省中考數(shù)學試卷(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結(jié)論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關(guān)系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2001•河南)如圖,銳角ABC中,以BC為直徑的半圓O分別交AB、AC于D、E兩點,且S△ADE:S四邊形BCED=1:2,則cos∠BAC的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案