已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=______;
(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過(guò)O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).
(1)根據(jù)圖中得出:
當(dāng)P點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),△POC的面積為12,
∴AO=
22+32
=
13
,
∴m=
13
,
故答案為:
13


(2)∵圖1中四邊形ODEF是等腰梯形,點(diǎn)D的坐標(biāo)為D(m,12),
∴yE=yD=12,此時(shí)圖2中點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合,
∵點(diǎn)B在x軸的正半軸上,
∴S△BOC=
1
2
×OB×|yC|
=
1
2
×OB×3=12.
解得OB=8,點(diǎn)B的坐標(biāo)為(8,0).
此時(shí)作AM⊥OB于點(diǎn)M,CN⊥OB于點(diǎn)N.
(如圖2).
∵點(diǎn)C的坐標(biāo)為C(n,-3),
∴點(diǎn)C在直線y=-3上.
又∵由圖1中四邊形ODEF是等腰梯形可知圖2中的點(diǎn)C在過(guò)點(diǎn)O與AB平行的直線l上,
∴點(diǎn)C是直線y=-3與直線l的交點(diǎn),且∠ABM=∠CON.
又∵|yA|=|yC|=3,即AM=CN,
可得△ABM≌△CON.
∴ON=BM=6,點(diǎn)C的坐標(biāo)為C(6,-3).
∵圖2中AB=
AM2+BM2
=
32+62
=3
5

∴圖1中DE=3
5
,OF=2xD+DE=2
13
+3
5


(3)①當(dāng)點(diǎn)P恰為經(jīng)過(guò)O,B兩點(diǎn)的拋物線的頂點(diǎn)時(shí),作PG⊥OB于點(diǎn)G.
(如圖3)
∵O,B兩點(diǎn)的坐標(biāo)分別為O(0,0),B(8,0),
∴由拋物線的對(duì)稱性可知點(diǎn)P的橫坐標(biāo)為4,即OG=BG=4.由tan∠ABM=
AM
BM
=
3
6
=
PG
BG
可得PG=2.
∴點(diǎn)P的坐標(biāo)為P(4,2),
設(shè)拋物線W的解析式為y=ax(x-8)(a≠0).
∵拋物線過(guò)點(diǎn)P(4,2),
∴4a(4-8)=2.
解得a=-
1
8

∴拋物線W的解析式為y=-
1
8
x2
+x.
②如圖4.
i)當(dāng)BP為以B,P,Q,R為頂點(diǎn)的菱形的邊時(shí),
∵點(diǎn)Q在直線y=-1上方的拋物線W上,點(diǎn)P為拋物線W的頂點(diǎn),
結(jié)合拋物線的對(duì)稱性可知點(diǎn)Q只有一種情況,點(diǎn)Q與原點(diǎn)重合,其坐標(biāo)為Q1(0,0).
ii)當(dāng)BP為以B,P,Q,R為頂點(diǎn)的菱形的對(duì)角線時(shí),可知BP的中點(diǎn)的坐標(biāo)為(6,1),BP的中垂線的解析式為y=2x-11.
∴點(diǎn)Q2的橫坐標(biāo)是方程-
1
8
x2
+x=2x-11的解.
將該方程整理得x2+8x-88=0.
解得x=-4±2
26

由點(diǎn)Q在直線y=-1上方的拋物線W上,結(jié)合圖4可知點(diǎn)Q2的橫坐標(biāo)為2
26
-4.
∴點(diǎn)Q2的坐標(biāo)是Q22
26
-4,4
26
-19).
綜上所述,符合題意的點(diǎn)Q的坐標(biāo)是Q1(0,0),Q22
26
-4,4
26
-19).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;
(3)在(2)條件下,點(diǎn)P(不與A、C重合)是拋物線上的一點(diǎn),點(diǎn)M是y軸上一點(diǎn),當(dāng)△BPM是等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線y1=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,1),且經(jīng)過(guò)點(diǎn)B(
5
2
,
3
4
),拋物線對(duì)稱軸左側(cè)與x軸交于點(diǎn)A,與y軸相交于點(diǎn)C.
(1)求拋物線解析式y(tǒng)1和直線BC的解析式y(tǒng)2;
(2)連接AB、AC,求△ABC的面積.
(3)根據(jù)圖象直接寫(xiě)出y1<y2時(shí)自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:直角梯形OABC中,BCOA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD.直角梯形OABC中,以O(shè)為坐標(biāo)原點(diǎn),A在x軸正半軸上建立直角坐標(biāo)系,若拋物線y=ax2-2ax-3a(a<0)經(jīng)過(guò)點(diǎn)A、B、D,且B為拋物線的頂點(diǎn).
①寫(xiě)出頂點(diǎn)B的坐標(biāo)(用a的代數(shù)式表示)______.
②求拋物線的解析式.
③在x軸下方的拋物線上是否存在這樣的點(diǎn)P:過(guò)點(diǎn)P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)過(guò)點(diǎn)A(1,-3),B(3,-3),C(-1,5),頂點(diǎn)為M點(diǎn).
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點(diǎn)P,使∠POM=90°.若不存在,說(shuō)明理由;若存在,求出P點(diǎn)的坐標(biāo).
(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90°,若不存在,說(shuō)明理由;若存在,求出K點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過(guò)A(4,0),B(1,0),C(0,-2)三點(diǎn).
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由.
(3)P是直線x=1右側(cè)的該拋物線上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A、P、M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明代表班級(jí)參加校運(yùn)會(huì)的鉛球項(xiàng)目,他想:“怎樣才能將鉛球推得更遠(yuǎn)呢”,于是找來(lái)小剛做了如下的探索:小明手摯鉛球在控制每次推出時(shí)用力相同的條件下,分別沿與水平線成30°、45°、60°方向推了三次.鉛球推出后沿拋物線形運(yùn)動(dòng).如圖,小明推鉛球時(shí)的出手點(diǎn)距地面2m,以鉛球出手點(diǎn)所在豎直方向?yàn)閥軸、地平線為x軸建立直角坐標(biāo)系,分別得到的有關(guān)數(shù)據(jù)如下表:
鉛球的方向與水平線的夾角300450600
鉛球運(yùn)行所得到的拋物線解析式y1=-0.06(x-3)2+2.5y2=
______(x-4)2+3.6
y3=-0.22(x-3)2+4
估測(cè)鉛球在最高點(diǎn)的坐標(biāo)P1(3,2.5)P2(4,3.6)P3(3,4)
鉛球落點(diǎn)到小明站立處的水平距離9.5m

______m
7.3m
(1)請(qǐng)你求出表格中兩橫線上的數(shù)據(jù),寫(xiě)出計(jì)算過(guò)程,并將結(jié)果填入表格中的橫線上;
(2)請(qǐng)根據(jù)以上數(shù)據(jù),對(duì)如何將鉛球推得更遠(yuǎn)提出你的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,要建一個(gè)長(zhǎng)方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,如果用50m長(zhǎng)的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場(chǎng),設(shè)它的長(zhǎng)度為xm.
(1)要使雞場(chǎng)面積最大,雞場(chǎng)的長(zhǎng)度應(yīng)為多少m?
(2)如果中間有n(n是大于1的整數(shù))道籬笆隔墻,要使雞場(chǎng)面積最大,雞場(chǎng)的長(zhǎng)應(yīng)為多少m?
比較(1)(2)的結(jié)果,你能得到什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線AB、CD分別經(jīng)過(guò)點(diǎn)(0,1)和(0,2)且平行于x軸,圖1中射線OA為正比例函數(shù)y=kx(k>0)在第一象限的部分圖象,射線OB與OA關(guān)于y軸對(duì)稱;圖2為二次函數(shù)y=ax2(a>0)的圖象.
(1)如圖l,求證:
AB
CD
=
1
2
;
(2)如圖2,探索:
AB
CD
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案